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Abstract—Beamforming is a way of directing a signal to the 

users will. This is achieved by matrix manipulation which won’t 

be discussed here due to its complexity. In this case, only one 

portion of the beamformer is successfully working. The entire 

beamformer has been developed, but isn’t fully functional. 

I. INTRODUCTION 

A beamformer will take an input signal from any direction 
and output in a desired direction. This project has many 
implications in industries where signals are everywhere. One 
good example is with a basic Wi-Fi router which outputs Wi-
Fi in all directions. With this beamformer, Wi-Fi can be sent 
directly to a device that needed it. This would allow for a 
faster, stronger, and longer-range signal since it can be 
focused in one direction instead of everywhere. Wi-Fi is one 
example, but this idea can be applied in many industries that 
deal with signals.  

This report will mostly contain information about one part 
of the beamformer because that is the part that is fully 
finished. A beamformer is consisted of three different “cells” 
which include an internal cell, a boundary cell, and a final 
processing cell. They are connected in a cascading fashion 
where the outputs of one cell are the inputs of another cell. 
The boundary cell is the most complex one and is the one that 
will be discussed in detail here. Everything that is discussed is 
on the FPGA with no external peripherals. This is how an ideal 
beamformer would be with some I/O’s as needed for data 
acquisition. Discussion about the internals of the design 
include pipelining, timing, cordic, division, multiplication, 
and feedback loops. A two antenna beamformer has also been 
developed, but it’s not working correctly so it won’t be 
discussed in detail. 

II. METHODOLOGY 

A. Boundary Cell 

This cell consists of three inputs, four outputs, and four 
internal registers that are updated every iteration. The signals 
that will be discussed can be seen in Figure 1. The related 
equations are below figure 1 and will be the main topics of 
this report. They seem to be basic equations, but implementing 
everything on an FPGA isn’t as trivial as it seems. Timing was 
necessary to perfect so that every signal arrives to components 
when they are supposed to. 

 
Figure 1. Boundary Cell IO 
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One thing to be noted is that uI and sO are complex 

numbers, that is the reason for two separate signals in Figure 
1. The best way to deal with complex numbers in hardware 
is to have two signals for the real and imaginary parts. A 
second way would be to have the most significant bits relate 
to the real portion while the least significant bits relate to the 
imaginary portion. This method seems much more 
complicated so method one was used in this project.  

To start with the first equation regarding x’, at first this 
equation seems incredibly difficult to implement in 
hardware. After some time, it was noticed that this is the 
exact output of Xn in a cordic component. This relation 
made this project manageable because it is known that 
square root is complicated to implement in hardware. 
However, that equation can’t be completed first because the 
absolute value of a complex number is the square root of the 



squared roots. This means that a signal, absU, needs to be 
calculated using the same Cordic component. 

The first thing that is done when start goes high is to 
calculate absU with the inputs uRI and uII. Those two 
signals go into a cordic and after about 20 cycles, the Xout of 
cordic is the value of absU * An. An is a constant which, 
depending on whether using the normal or expanded version 
of cordic, is 1.647 or 3.294, respectively.  Since the output of 
Xout is multiplied by that number, it makes sense to divide 
by it to achieve the true value of absU. Division, however, is 
one of the more complicated functions to achieve in 
hardware and will take more cycles than cordic itself. This 
can’t be avoided, but the user can try to optimize this by 
pipelining which will be discussed later. Once the absU is 
calculated, it can be fed into the same cordic which will have 
an accompanying x value. The same division step will have 
to happen when this cordic is done, which will successfully 
produce the required x’ value. This signal is needed by every 
other signal in the system, that is why it is calculated first. 
Now that the division by An is done, three parallel divisions 
can start. These divisions are for cO, sRO, and sIO but they 
can be calculated in parallel because none of them rely on 
each other. Once these divisions are done the final 
multiplication can be done for yO, and this sequence will 
repeat for the next data.  

This all seems to be straightforward until it is 
implemented. The components alone can be easily made, but 
once they are connected in a cascading fashion issues may 
appear.  

 

B. Challenges 

The initial plan for the beamformer is to have it pipelined 
in a way that will output valid data every clock cycle. This is 
due to the speed of signals, so it’s always best to quickly 
calculate instead of wasting time. Initially the boundary cell 
was developed in a non-pipelined way, and then was going to 
be pipelined. It was later found that this cell can’t be pipelined 
due to the calculation of x’. This signal requires the use of x 
and absU. The signal absU depends on the input of the system 
uRI and uII and can be available every clock cycle. The issue 
comes with x since it is always updated with the new value of 
x’. Since this value needs to wait for the x’ to be calculated, it 
can’t be used with the next corresponding absU. This breaks 
the pipeline and causes issues down the entire cell. If one step 
can’t be pipelined, that means the rest of the cell can’t be 
pipelined. For this reason, it was decided to complete the 
project without a pipeline, and try to get as little clock cycles 
as possible.  

A second challenge came with the signal x which is 
internal to the cell and is always being updated. Looking at the 
equation, it’s obvious that x reaches infinity as time goes to 
infinity. This is an issue with hardware because a specific 
fixed point format was chosen at [16 14], and it’s clear that x 
will surpass two integer bits relatively quickly. At first it was 
unknown why the original developers of this beamformer 
method would allow such an obvious mistake. After some 
time was spent on it, it was clear why it must be this way. 
Without getting too much into the math, x going to infinity is 

exactly what should happen. This makes cO go to one and sO 
go to zero, which will cascade into the other cells and 
eliminate the necessary elements of the input matrix while 
leaving some elements untouched. This leaves some questions 
about whether all of this complexity needs to be included into 
the hardware. If x is reaching large values and uI will stay 
small, the new value of x won’t be noticeably changed. This 
could mean that estimation might be able to work in substitute 
of actual calculation. As of now, this is just speculation and it 
would require extensive testing to insure the correct 
functioning of beamforming. If estimation would work that 
would mean the entire cell could be pipelined as initially 
planned, which would allow the beamformer to be pipelined. 
Instead of having around 150 cycles it could possibly be cut 
down to one, but that needs further research. 

 
Figure 3. Boundary FSM Part 1 



 
Figure 4. Boundary FSM Part 2 

 

It can be seen in figures 3 and 4 that the FSM for the 
boundary cell is quite complex. This is because of an initial 
setup that the cell requires. There is a 99% chance that this 
could be simplified, but for the sake of time it was 
implemented the brute force way.  

C. Axi-Full Protocol 

With the boundary cell fully working, the next step was to 
design hardware that could interface between the on-board 
processing system and the programmable logic. This was done 
like previous labs in the course, which utilized an input and 
output FIFO which held the data that was input to the system 
and ready to be outputted. The details of this are extremely 
complex, so a high-level view of things will be discussed here. 
A state machine controls when data is fed into the boundary 
cell, started, and when the output data is ready. This is done 
by several signals that indicate when all of these processed 
should execute. The start signal goes high when enough data 
has been loaded to the input FIFO, and only when the done 
signal is high will the output FIFO be loaded. This signal will 
also begin the next cycle, if data is available on the input 
FIFO.  The c code that was written to load and read data onto 
the FIFO’s wasn’t complicated, and consisted of less than 50 
lines of code. Overall, including the axi-full protocol wasn’t 
an issue. 

D. 2 Antenna Beamformer 

The two antenna beamformer that was also designed 

should be discussed here even though a functioning design 

hasn’t been made. With the boundary cell complete, the 

internal cell needed to be designed and implemented.  

 

 
Figure 2. Internal Cell 

 

 

As can be seen in Figure 2, the internal cell has many 

inputs and outputs like the boundary cell. The following 

equations determine the output values. 

 

𝑢𝑂 = 𝑐 ∗ 𝑢𝐼 − 𝑐𝑜𝑛𝑗(𝑠𝐼) ∗ 𝑥  [6] 

𝑥 = 𝑠 ∗ 𝑢𝐼 + 𝑐 ∗ 𝑥   [7] 

 

The challenges of this cell were mainly aimed at timing, 

since it’s all multiplication and addition components. 



Making sure the signal value is correct when it is needed 

was the only thing to consider in this component. Once the 

internal cell was complete it was time to connect it all. 

There were two boundary cells, three internal cells, and one 

final processing cell (which was one multiplication).  

This was quite a challenge initially, but like the other 

issues with this project it was overcome after some time. 

The problem came with the boundary cell taking around 150 

cycles to complete while the internal cell took around 20. I 

introduced a start and done signal to every component, so 

they could be in sync. This seemed to fix the problem and 

allowed for further development with the Axi-Full 

implementation.  The setup for the entire beamformer was 

extremely like the boundary cell, except for more input 

signals. The state machine had additional states, but the 

overall process was basically identical. The only issue is 

that the results that were obtained from the SDK terminal 

didn’t seem correct. There wasn’t enough time to analyze 

the results, but there’s a low chance they were right. Further 

research would be able to find the problem, it’s most likely 

a small issue.   

III. EXPERIMENTAL SETUP 

This project was done on a Zybo board that contains a 
SOC that has a Zynq-7000 FPGA and a dual core ARM 
processor. This allows for seamless communication between 
a processing system and programmable logic. To do this 
interaction, a protocol known as Axi-Full was used. The 
details of that protocol are beyond this report. To interact with 
the processing system, Xilinx SDK was used and 
communicated with the board via UART. All of this was on 
board with no external peripherals which made everything 
work smoothly. The inputs to the FPGA were mimicking 
signals, and the outputs were displayed to the SDK terminal.  

IV. RESULTS 

The results of the boundary cell were a success. The output 
data that was produced on the terminal matched the expected 
results. This was confirmed by MATLAB and a Vivado 
simulation before implementing the processing system. 

Although the results of the beamformer weren’t successful, it 
shouldn’t be too complicated to see what went wrong. The 
main thing would be to go back to the simulation of the IP and 
see what went is happening. Once the IP is working in the 
simulation, the next step would be to add the AXI-Full and 
then simulate that. After that it would be time to test it on the 
board via Xilinx SDK. 

CONCLUSIONS 

The main take-away from this project is that theory and 
practice are truly different, and this needs to be considered. In 
theory, the beamformer should output data every clock cycle. 
However, as was shown above, this will be impossible without 
some estimation. It is impossible to pipeline a feedback loop, 
so there would have to be estimation for this to work as 
intended. Topics that were used heavily in this project were 
timing and pipelining. Timing is one of, if not the, most 
important things in hardware. Every signal needs to be its 
correct value when it is needed, and this isn’t an easy task. The 
use of state machines and registers were critical in this project. 
Pipelined cordic, division, and multiplication were initially 
used until the problem of the feedback loop were found. 
Implementing all three was a great learning experience even 
if they didn’t make it to the final design.  

The issues that remain are the implementation of the entire 
beamformer. Specifically, the problems with the current 
rendition are unknown but with some time can be found. As 
stated earlier, the best place to start would be the simulation 
of the IP without the Axi-full hardware.   

State the main take-away points from your work. List 
further work as well as what you learnt. What issues remain 
to be solved? What improvements can be made?  
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