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Abstract —We have designed a Zynq AXI Full       
Interface peripheral to calculate vector dot      
products as a parallel operation in hardware       
targeting Convolution operations such as found in       
Convolutional Neural Networks. Execution speed     
of an example neural network using the dot        
product peripheral was slightly better than a       
random-access software-only implementation, but    
actually slower than a dot-product optimized      
software-only implementation. The performance    
limitations are analyzed and possible further      
enhancements identified. 

I. Introduction 

Neural Networks are arrangements of signal      
processing units inspired by neural systems of real        
organisms with many simplifications to make their       
implementation in a wide variety of applications such        
as signal filtering, feature detection, and stimulus       
classification feasible. Neural network models for      
signal processing and recognition were explored in       
the 1950s and 1960s, but a lack of scalable training          
methods and suitable hardware platforms for large       
networks limited widespread adoption. Interest     
waned until backpropagation “learning” techniques     
were developed in the 1980s that enabled       
usefully-sized networks for a variety of real tasks to         
be trained1. Most examples of neural nets in this ear          
were typically implemented on standard digital      
computers, although some custom hardware chips for       
implementing processing units with configurable     
connections were developed and demonstrated in the       
1980s and 1990s (Synaptics Inc. was founded by        
early researchers in this field). Interest in neural        
networks plateaued again due in part to attention        
placed in Digital Signal Processing (DSP) and       

statistical methods of Machine Learning (ML) until       
the late 1990s through today, when a neural network         
architecture further inspired by the visual cortex of        
animals was developed and found a much more        
tractable method of implementing many-layered     
networks, also known as deep networks. This       
network architecture is called a Convolutional Neural       
Net or CNN because the core feature of it is a form of             
convolution operator within the early layer(s) of the        
network. In the 2000s and 2010s, implementations of        
CNN and other deep networks received a significant        
boost in training speed and execution speed with the         
application of highly parallel processing technologies      
such as found in graphic processing units (GPU) and         
field-programmable gate arrays (FPGAs). These     
approaches are being used for a wide variety of         
applications in fields as diverse as automotive,       
financial, marketing, security, and many more. 

A.    Basics 

A neuron unit of a neural network is an entity          
that produces a non-linear response signal to a        
weighted sum of input signals originating from       
input-sensing units or earlier neuron units. Units       
can be organized in a variety of ways.  
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To keep the organization easier to understand,       
model, and manage, the network is usually       
organized into multiple layers, where each unit       
in one layer only receives inputs from the lower         
layer, and only provides input to the higher        
level. The layer connected directly to sensor       
signals or some other source of information is        
called the Input Layer . The layer proving output        
signals, such as signal/object classification, or      
feature location within a larger image, is called        
the Output Layer . Most networks that are part        
of a meaningful application have one or more        
additional layers in between the input and output        
layers. Each of these layers are traditionally       
called Hidden Layers , because they are not       
directly observing nor providing any outside      
signal. Units in one layer may be connected to         
all units in another layer, in which case the layer          
is called a Fully-Connected layer. In other       
networks, units in a layer may be only connected         
to a subset of units. This subset is often termed          
a Receptive Field , especially when it is a        

spatially compact sample of a larger image or        
data set.  

 
The output activation signal of a neural net unit         
is typically a scalar value represented by either a         
real number within a modest range (-10 to +10)         
or a scaled integer, usually 8 to 32 bits in size.           
Each above the Input Layer unit receives inputs        
from one or more other units. The activation        
signal is modified by a weight factor, usually        
modeled as a simple proportional factor with a        
small value, typically -1 to +1 for real-valued        
signal representations, or a small fixed-point      
scaled-integer factor. When modelled with     
simple linear proportional weights, the total      
weighted input to a unit can be represented by         
the vector dot product of one vector holding the         
output activation levels of the connected units       
and a second vector holding the corresponding       
weight values: (z = w⋅x). This total weighted        
input value z is then taken as the input to the           
unit’s activation function. While purely linear      
activation functions are possible, they do not       
capale of performing sophisticated    
discrimination and other interesting tasks.     
Therefore, some form of non-linear function is       
needed. To date, the most common approaches       
are a sigmoid function, or a rectified-linear       
function, also known as ReLU . The sigmoid       

function received a lot of attention because this        
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S-shaped curve models the activation of      
biological neurons reasonably well, which do      
not respond much to low levels of input        
stimulus, begin to increase in response to some        
level of input, then begin to saturate as the input          
level keeps increasing.  

 
The two varieties of the sigmoid employed are        
the logistic function 1/(1 + e-z) whis is alway         
positive from 0 to 1, and the hyperbolic tangent         
function tanh(z) = (ez - e-z) / (ez + e-z), which is            
symmetric about the axis and ranges from -1 to         
+1. Perhaps more recently, the ReLU function       
max(0, z) has been shown to be equally if not          
better-performing in many applications with     
adequate training with obvious benefits in terms       
of lower hardware resources and/or execution      
time cost. 
 

B.    Convolutional Neural Networks 

Convolutional neural networks use three basic      
ideas: local receptive fields , shared weights , and       
pooling to make deep networks practical to       
develop and use in practice.  

 
a. Local Receptive Fields 

Each input pixel is connected to a layer of         
hidden neurons. The connections are made in       
small localized regions of the input image. Each        
neuron in the first hidden layer is connected to a          
small region (e.g. 5 by 5) of input pixels, as          
illustrated here: 

The region in the input image is called the Local          
Receptive Field for that hidden neuron. Each of        
the connections to the input units has a weight,         
and the hidden neuron itself has an overall bias.         
This particular hidden neuron can be defined as        
learning to analyze its particular local receptive       
field. 

 
In effect, one may imagine this Local Receptive        
Field sliding over entire input image in small        
increments, which is known as the Stride       
Length , and feeding the total weighted input to        
the units in the first hidden layer. For an input 28           
by 28 pixel image, and a 5 by 5 local receptive           
fields, there will be 24 by 24 neurons in the          
hidden layer. This is because one can only move         
the local receptive field 23 neurons across and        
23 neurons down from the origin position,       
moving from the top left of the input image to          
the bottom right. 
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b. Shared Weights and Biases 

Each hidden neuron in the convolutional layer       
has a bias and same set of weights as all other           
units in the same layer connected to their        
respective local receptive fields. The output is       
mathematically represented below: 

Given some non-uniformity in the weights, the       
weighted input will be stronger or weaker       
depending on how well the weights correspond       
to a particular pattern of activation in the        
previous layer at the location of the receptive        
field. We can say that the weights are used to          
detect a specific feature at each location in the         
input layer, forming a type of map of where the          
pattern is strongly present, absent, or      
anti-correlated The map from the input layer to        
an hidden layer is usually called a Feature Map .         
All weights defining the feature map are the        
Shared Weights. A particular Shared Bias      
value may be used for all units in the feature          
map, or individual bias values may be trained.        
All the shared weights and bias are often said to          
define a Filter.  
 
In practice, most CNNs use multiple layers of        
convolutional layers, each with multiple feature      
maps with distinct sets of shared weights. Later        

layers of CNNs often use fully-connected layers       
for final output, as illustrated here.  

 
 
 

c. Pooling Layers 

Pooling layers exist alongside the convolutional      
layers. They are used immediately after      
convolutional layers to downsample the previous      
layer’s output to improve position invariance      
(ability to detect a feature wherever it occurs),        
improve generalization, and to reduce the      
computing resources and memory by having      
fewer units and weights in the later layers. Often         
in CNNs, the Max Pooling procedure is used,        
whereby the maximum activation value within a       
2 by 2 region of the convolutional layer is         
selected and passed on to the next layer. The         
activation value selected may be adjusted with a        
bias, but it is common to omit biasing in this          
layer. For a 28 by 28 output convolutional layer,         
after max pooling, we have a 14 by 14 neuron          
layer. 
 

d. Summary of Convolution Steps in LeNet-5 

LeNet-5 is a well-known example of a CNN. It         
begins with the input 32 by 32 pixels. This is          
followed by a convolution layer of 6 feature        
maps, each of 5 by 5 local receptive fields. This          
produces a 6 by 28 by 28 layer of hidden feature           
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neurons. Following max pooling applied to 2 by        
2 regions across the 6 feature maps, the resulting         
layer is a 6 by 14 by 14 hidden feature neuron           
layer. Convolution is once again done, and this        
produces a 10 by 10 convolutional layers of 16         
feature maps. Max pooling is repeated to       
produce a 16 by 5 by 5 hidden feature neuron          
layer.  
The next connection represents a 1D array       
convolutional layer with 120 feature maps. This       
is connected to the Fully connected layer of 84         
feature maps and finally to the final layer of the          
connection. This Output, fully connected, layer      
connects every neuron from the max-pooled      
layer to every one of the 10 output neurons (digit          
0 to 9).  

 

We chose a similar structure for our final        
project, but simplified the overall network by       
having fewer feature maps and fewer      
fully-connected neurons. Our specific design is      
discussed in the Methodology section which      
follows below. 

II.       Methodology 

For our final project we wanted to implement        
hardware acceleration of a CNN. CNNs are       
highly effective while having modest numbers      
of neuron connection weights in the early       
convolutional layers, while the convolution     
operation itself is repeated many times over the        
input data and earlier layer outputs. This       
scenario is ideal for hardware parallelization,      
which is why GPU coprocessors and FPGA       
hardware have both been used to implement key        
parts of CNN architectures. Reconfigurable     

FPGAs provide another capability that might be       
useful if not essential for managing very large        
input datasets: ability to reconfigure the      
hardware to optimize performance for layers and       
connections organized in different ways.2 Such a       
variation is quite common: lower layers have       
spatially-compact receptive fields and    
widely-shared weights, middle layers implement     
pooling or sample number of lower-level feature       
maps. Higher layers may be more      
widely-distributed connections, or even a     
fully-connected layer.  
 
As described above, there are two key       
calculations that are performed by neural      
network units: weighted average of inputs,      
followed by a nonlinear function. Of these, the        
function that offers the best opportunity to       
employ highly parallel computing resources is      
the weighted input operation. When one      
considers that the CNN use of shared weights        
means that the weight values do not need be         
repeatedly passed to the hardware, there is even        
more opportunity to make effective use of       
configurable hardware. For relatively-fixed    
applications, it is possible to lock in the weights         
in a custom hardware design through the use of         
read-only memory (ROM) look-up tables     
(LUTs). During class, an intriguing method of       
processing weighted averages called Distributed     
Arithmetic was briefly covered and described in       
some detail in a class handout3. We did not         
attempt to implement this method, but we would        
encourage future students to consider     
implementing it as a good method to accelerate        
weighting factors in a variety of applications. 
 

A.    LeNet-5 

We chose to implement the dot product       
operation to accelerate a simplified version of       
LeNet-5 , a very famous CNN architecture. The       
LeNet architecture was first introduced by      
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LeCun et al. in their widely-cited 1998 paper,        
Gradient-Based Learning Applied to Document     
Recognition . 4 It can be useful for pattern       
inference. The test dataset is the MNIST dataset        
described further below, which contains a total       
of 70,000 grayscale images of handwritten      
digits as one might find on a postal envelope or          
paper forms filled out by hand5 . The LeNet-5         
has 3 convolutional layers (C1, C3, C5), 2        
subsampling “max pooling” layers (S2, S4) , a        
fully-connected layer (F6) and an output layer. 
 
In each “feature map”, nodes are organized in a         
2D image fashion and have shared weights that        
are strongly stimulated by a specific feature at a         
corresponding location in the lower layer. Each       
node in a convolutional layer is identified by        
(column index, row index, feature map index).       
Each pooling layer only connects to a small        
receptive field in its corresponding feature map       
and implement a simple function such as       
maximum, or average within the small “pool” of        
inputs. There is no crossover between the       
convolution layer and subsampling Layer. 
 

B.    Our CNN Design 

In our implementation, we kept the input image        
at its original 28 by 28 pixel size. We convert          
the 8-bit 0 to 255 grayscale image levels to a          
fixed-point value ranging from -1.0 for 0 to +1.0         
for 255.  

 
That input layer is then scanned by four feature         
map layers where each of their units observes a         

specific 5 by 5 pixel receptive field region of the          
original image. The size of 5 of the receptive         
field in each dimension means that there are 24         
(28 - 5 + 1) units by 24 units in each of the four              
feature maps of the first convolutional layer.       
These are downsampled through max pooling by       
a layer with four sets of 12 by 12 units, each of            
which returns the maximum value of a 2 by 2          
receptive field with no overlap (stride of 2).  
 
The second convolutional layer produces six      
feature maps using 100 weights each (5 by 5         
within one feature map, and all four feature        
maps scanned at the same corresponding      
location). There are eight distinct receptive field       
positions along each dimension, for a total of 8         
by 8 units, downsampled again through max       
pooling to produce a total of six 4 by 4 little           
feature maps. These feature maps detect      
more-abstract, higher-order “features of    
features” compared to the previous layer. 
 
Next, all 96 units of the second max pooling         
layer are fully connected to a one dimensional        
hidden layer of 48 units. This set of connections         
has the majority of the network’s trainable       
weights (96 * 48 = 4,608). 
 
Lastly, the ten possible digit classification values       
are represented by ten more units      
fully-connected to the 48 hidden layer units.       
The ten activations are then adjusted by the “soft         
max” (normalized exponential ezj/Σezk) function     
to emphasize the “winner” classification and      
provide the result as a rough likelihood       
percentage. 
 

C.   Our Hardware Design 

To support the first convolutional layer      
processing, we needed to pass a set of 25         
weights to the hardware, once for each feature        
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map. Then we can send many 5 by 5 pixel sets           
of the image data plus a bias term to the          
hardware and receive back a single value as the         
weighted input for the feature map unit. These 5         
by 5 matrix values for both the weights and         
image pixel levels can be reshaped into a        
one-dimensional vector with no loss of meaning,       
as long as each vector has the same positional         
mapping of elements to their respective      
matrices. We extended the vector length to 26        
elements to allow space for the bias term and to          
use an even number, since the AXI Full        
peripheral interface is 32 bits wide bits and we         
chose to represent weights and unit activations       
in a 16 bit fixed point format with 10 fractional          
bits: FX [16 10]. This encoding was determined        
experimentally to be suitable for our application,       
as described in a later section. Therefore, we        
needed to pack the 26 values for each vector into          
13 pairs of 16-bit numbers and feed them into         
the hardware. For later layers, we need 100 or 96          
element vectors (5 by 5 by 4, or 4 by 4 by 6) or              
48 (hidden layer to output unit). While these        
were not attempted to be passed to the AXI         
peripheral, it would be possible to break them up         
into pieces that are each no more than 26         
elements long. An alternative approach would      
be to make the peripheral support large vectors        
like this and provide a means to pass it smaller          
vectors efficiently (e.g. use special address to       
pass the length, or any write to a special address          
terminates the vector at the current length). 
 
We chose the AXI Full peripheral bus interface        
to communicate with the main ARM processor       
system, as we were familiar with it from earlier         
class exercises and laboratory assignments and it       
can support fast DMA memory transfers, which       
we might want to utilize in the future. We         
wanted to decouple the sending of weights (w)        
and unit activation vectors (x), so we determined        
that our AXI interface would monitor the access        
write address and and use it to set a flag          

representing the intended identity (and     
corresponding register storage location) of the      
vector. A zero in the address bit 2 represents a          
unit activation vector, while a 1 in the bit 2 of           
the address (e.g. base address + 4) indicates the         
data is a weight vector. This flag is called         
‘ab_sel’ in our VHDL statements, where the “a”        
vector is the unit activation values vector and the         
“b” vector is the connection weights vector.  
 
We chose the AXI Full FIFO interface model        
from class, as it allows us to send the data either           
as separate pairs of values or through       
many-value DMA burst without requirement to      
identify the specific index of each vector       
element. This means that we needed to       
implement our own method of counting input       
value pairs and storing each of them in the         
correct activation or weight register. We did this        
by implementing an element count ‘elem’ in a        
“red clock” finite state machine  (FSM).  
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When we have data available in the FIFO, we         
enable reading it and latching it into an        
appropriate register enabled by a demultiplexed      
select line derived from the counter ‘elem’ and        
the ‘ab_sel’ vector select flag from the write        
address as described above. 
 
Recalculation of the dot product is only       
completed when the activation vector is sent and        
all expected pairs of values received. The       
outputs of the corresponding weight ‘w’ and       
activation ’x’ register are fed to a signed        
multiply operation resulting in a 32-bit product       
with fixed-point FX [32 20] scaling. The       
product terms are then added together using an        
adder tree structure that requires five levels       
(ceil(log2(26)) = 5). An early version of this        
adder was un-clocked, but a staged version with        
registers at each level was implemented. 
 
When all of the input vector is received and the          
calculations have had enough time to pass       
through the staged adder tree, we enable the        
result to be written into the output FIFO, which         
then makes it available to the main processor        
system to be read by the embedded application        
software, which implements the other parts of       
the network (ReLU function, max pooling,      
softmax output) and unit/weight selection. 
 

D.    Hardware Circuit Details 

 Dot Product Accelerator AXI Full Peripheral 
IP 

 
We implemented our hardware design as a       
packaged Intellectual Property (IP) that utilizes      
the AXI Full interface of the Zynq chip family,         
which supports interconnecting AXI Masters to      
Memory-Mapped AXI Slave peripheral    
co-processors in the Programmable Logic (PL)      
fabric of the chip. Its structure consisted of the         

Dot Product IP, interfaced with the input and        
output FIFOs, and two Finite state machines, as        
was previously used in class assignments. The       
“Red” FSM is in charge of the irden, rst, owren,          
elem, Ei, ab_sel, ofull, iempty signals. The       
“Blue” FSM is in charge of the ifull, oempty         
signals. The ab_sel signal is sourced from the        
third bit of the axi_awaddr address of the AXI         
interface. It is used as an address for the weights. 

 

 

a.    DOT PRODUCT IP 

This is the heart of the Dot Product Accelerator         
IP. It basically functions to produce the total        
weighted input (z) to the non-linear function of a         
higher-layer neuron unit. This IP design consists       
of Registers, Input Register logic SEL, Red       
Finite State Machine, and Dot Product Math.  

By design, the weights (w) are first pulled from         
the AXI bus and place in the input FIFO. The IP           
reads these inputs from the input FIFO and        
stores them into the designated registers. The       
second batch of inputs from the FIFO, represent        
the inputs (x), and are stored in their designated         
registers. The registers are accessed based on       
SEL circuit and sent into the Dot Product Math         
Circuit. The output of this circuit is fed to the          
output FIFO. The Red FSM issues the Elem        
index value and Ei enable line that controls the         
SEL circuit, which in turn enables specific       
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Registers for the inputs x and the weights w .         
Each register is 16 bits, thus 2 registers are         
enabled simultaneously for each pair of values       
arriving from the 32 bit-wide FIFO and they are         
J (26 in the current implementation) in number.        
The 32 bit word from the input FIFO is split into           
2 16 bits and sent to a separate register, either of           
the input x  registers or the weights w  registers.  

 

b.    SEL 

This is an input register selection logic circuit. It         
functions as a Demultiplexer (1-to-J/2 Demux).      
The input Ei , with an eight bit selection elem,         
produces [J/2] outputs. These outputs are in two        
sets: one for the inputs x, and another for the          
weights w. The ab_sel input from the AXI block         
when true allows a weights output to be true,         
while the not ab_sel signal allows the other set         
of outputs. That is, if ab_sel is 1, one of the           
weights enable signal is activated, otherwise,      
one of the other outputs is selected to be active.          
The corresponding outputs of the Demux, based       
on the Ei, Elem and ab_sel are sent to the           
respective registers in the Dot Product IP. The        
select line is only active if the general Ei signal          
is active.  

 

c.   DOT PRODUCT MATH 

The dot product math circuit consist of the        
multiplier and adder tree. All [J] inputs, each of         
16 bit values are multiplied by their       
corresponding 16 bit weights value. This serves       
as the inputs for the adder tree, to produce the          
Dot Product Sum. The circuit was designed such        
that the input will only overflow when either the         
weights w or activations x are large, and in our          
demonstration application, value are kept small. 

 

The Adder tree consist of 5 stages, each with         
registers. This ensures a potentially faster      
operation through pipelining. The final output of       
this circuit is sent to the output FIFO. 
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III.      Experimental Setup 

A.    VHDL Testbenches 

To test and validate our hardware design we        
used two levels of VHDL testbenches. The       
simple “tb_dotprod_id” test bench allowed us to       
test the interior portion of the design without the         
buffer FIFOs. We set up a data value pattern on          
the simulated “IFIFO out” signal bus and just        
used clock timing to determine when to change        
the signal to other values to emulate the way the          
main processor would feed in data to our circuit         
through the input FIFO. Similarly, we would       
monitor the output of the calculations that would        
normally go to the input side of the output FIFO.          
This level of testbench was useful to get the         
register select circuit working that determines      
where each of the sent vector elements would be         
stored. 

 

When we had development issues with our AXI        
peripheral not cooperating with our main      
processor, we used the tb_AXI testbench      
provided to the class which implements most of        
the AXI signals and bus interactions realistically       
so we could identify timing and handshaking       
issues. We used this testbench at length to        
refine the “red” clock Finite State Machine       
timing and interaction with the remainder of our        
hardware design.  

 

B.    MNIST dataset 

The MNIST dataset is a well-studied and easily        
understood dataset used in the computer vision       
and machine learning literature. This dataset      
classifies handwritten digits 0-96. With a total of        
70,000 images, images are split between 60,000       
images in the Training Data and 10,000 images        
in the Evaluation Data. The writing is taken        
from examples from hundreds of different      
writers from two pools: high school students and        
Census Bureau employees. None of the people       
used for the training set were used in the         
evaluation set. The training data is taken from a         
set Common splits include the standard      
60,000/10,000, 75%/25%, and 66.6%/33.3%.    
During training, it is common for a subset of the          
entire training set to be kept out of direct         
network training and used for interim      
performance evaluation. While the samples are      
distinct, they originate from the same pool of        
writers, so one can assume that the trained        
network will do better with this reserved subset        
that the evaluation set, which comes from a        
completely different pool of writers. Our      
objective is not to produce the best possible        
handwritten digit classifier possible (or even the       
best given the constraints on network size), but        
to provide a test ground for hardware designs        
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useful for CNN acceleration, so we did not        
formally test our network against the evaluation       
set.  
 
Each digit in the MNIST dataset is a 28 by 28           
pixel image, but LeCunn et. al padded the        
images to a size of 32 by 32 pixels to help the            
network tolerate shifted images, but we used the        
images as-is, and scaled the 0 to 255 intensity         
values to a fixed-point range of -1.0 to +1.0         
when loading into our network. 
 
Each image in the training and evaluation sets        
have associated classification labels. In other      
words, the “correct” interpretation or at least the        
intended meaning of the digit (some examples       
are quite sloppy, as you might expect from a         
wide variety of people).  

 
(From Nielsen7) 

C.    Neural Network Training 

At first, we attempted to use sample Python code         
from Michael Nielsen’s book Neural Networks      
and Deep Learning7. While the code ran and        
produced weights, when we imported these into       
our C program, it did not produce reasonable        
results, perhaps due to a transposition effect that        
we did not resolve. We implemented our own        
back-propagation functions in the C code to train        
the network weights and bias values. We used        

some common techniques in the field of neural        
networks to improve the training process: we       
adjusted the learning rate from a more       
aggressive starting rate to a more gradual rate        
over the training process. We also implemented       
weight decay where we reduce the magnitude of        
all weights by a small percentage if the average         
size of all weights (as defined by root mean         
square) is above a threshold value. This keeps        
most weights in the -0.5 to 0.5 range and helps          
prevent over-generalizing from specific training     
examples. We used the first 50,000 images of        
the training set for the training, and the last         
10,000 images in the training set as our        
“validation” set. After many minutes of training       
on a high-specification laptop (Intel Core i7), we        
could achieve validation accuracies around     
98.0%. +/-0.6% out of 1000-randomly selected      
examples from the 10,000.  

As we intended to implement our dot product        
accelerator in VHDL, we wanted to have the        
neural network to perform well with fixed-point       
numbers. We experimented with various     
encodings, and counted cases where the      
weighted input calculations overflowed the     
allowed encoding range of the number format in        
question. Because we trained our network using       
weight decay, the majority of weight values       
were fairly small, preventing overflow. We      
determined we had no overflows for a large        
sample of inputs when we used an FX [16 10]          
encoding and still keep fairly close to our        
original accuracy. 

After training the network on a PC, the code and          
weights were copied into the Xilinx SDK       
environment. The C program for the embedded       
ARM processor system was adjusted to read an        
SD card for the the training/validation image set,        
image labels. The weights and network      
definition file was formatted as an include file        
that defines the network specification as a large        
hard-coded string. This string is parsed just as        
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an external file would be. In the future it would          
be convenient to make this network and weight        
configuration information readable also from the      
SD card. 

IV.      Neural Net Testing and Results 

Our network implementation in C ran on our Zynq         
Zybo board with an SD card holding the image         
database and image classification labels. The      
application reads the card on startup and buffers it in          
DDR RAM. For timing purposes, we prepared a        
routine to process all 10,000 images in our validation         
data set with no planned output to the console that          
would rob performance. The classification accuracy      
was tracked (number “right” according to the label        
versus the total). Timing was measured by clock        
cycle counts returned by the XTime_GetTime( )       
function and verified to be accurate by stopwatch. 
 
Baseline performance for original “random”     
memory-access pattern version neural network     
(software only): 
9832 out of 10000 correct, or 98.32% in 190.191 sec. 
 
Performance for AXI dot product IP      
hardware-utilizing neural network: 
9832 out of 10000 correct, or 98.32% in 183.854 sec. 
(Note: the vectors were loaded into the AXI        
peripheral two elements at a time, not with DMA.) 
 
Performance for streamlined dot-product structured     
neural network (software only): 
9832 out of 10000 correct, or 98.32%  in 128.728 sec. 
 

V. Conclusions 

While we were able to complete a hardware design         
that could take advantage of parallel processing, it is         
clear that overall system performance requires careful       
consideration of of all operations, including data       
transfers into and out co-processing units. With       
conventional explicit (non-DMA) 32-bit data writes,      
our dot product hardware speed boost was not        
sufficient to repay the time needed to set up the input           
data, at least compared to software-only dot-product       
optimized C code compiled for the ARM core in our          

Zynq chip, although our hardware implementation      
was was slightly faster than a more simplistic        
software implementation with a more random-access      
memory pattern.  
 
Our overall application performance is quite      
impacted by the inherent requirement to pass large        
vectors of data out to our hardware peripheral        
repeatedly. Because of the way neural networks are        
configured, the same input pixel or intermediate       
activation level must be assessed many times to        
determine the state of a higher layer unit. In the case           
of our small network, the same input pixel (away         
from the image edge) would be sent as part of an           
activation vector one hundred times (!) during       
first-layer processing to the hardware because it is a         
member of twenty-five different receptive field      
configurations for each of the four feature maps. In         
the second layer of our network, the repetition is even          
worse with six feature maps, resulting in most        
activation values being sent 150 times. Obviously it        
would be better if the data could be sent fewer times.  
 
Another aspect to fast hardware performance only       
partly addressed in our hardware design is pipelining.        
We employed a coarse pipeline structure in our        
calculation subsystem, but did not design the input        
buffering registers to be fully pipelined. However,       
pipelining beyond use of input and output FIFOs may         
not be as useful since the nature of the dot product is            
already sequential, so a fast multiply-accumulator      
approach might be able to keep up with the AXI bus           
speed limitations. 
 
Our design is partially parameterized with VHDL       
generic parameters (e.g. be able to request a specific         
implementation of any length vector). Specifically,      
the input buffer registers, multipliers, and “red” clock        
FSM all are generic configurable using “for ..        
generate” and “if … generate” statements, but the        
adder tree subsystem is not at this time. In principle          
adder tree could be made generic or use existing         
adder tree hardware blocks. 
  
Given more time, we could have enjoyed exploring a         
variety of speed enhancements: 

1. DMA memory transfer for weight sets and       
especially activation data vectors. These     
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would become increasingly useful with     
larger vectors, such as the 96 input weights        
needed for each fully-connected hidden     
layer unit. We begun development of DMA       
transfer routines but did not find time to        
debug and test them. 

2. Increased parallelization: CNNs typically    
have multiple feature maps tied to an earlier        
layer, each with a distinct set of shared        
weights. After sending a particular 5x5      
receptive field to the hardware, that vector       
could have been used in parallel dot product        
calculations for each feature map. The set       
of results could be read back in a short burst.          
While our small CNN only had four feature        
maps in one layer, and six in another, some         
CNNs have many more, so higher levels of        
parallelization would be very beneficial.     
This would require an array of weight       
vectors to be configured and accessed      
repeatedly. 

3. Explore use of reconfigurable partitions with      
fixed lookup tables to implement     
“distributed arithmetic” methods of    
multiplying varying data by constant factors,      
which in our case are the network       
connection weights. 

4. Expand the design to work with entire image        
sets or at least large strips of the input image          
at a time to reduce the high rates of data          
transfer repetition described above. The     
hardware could index within hardware     
memory buffers to fetch values repeatedly as       
needed from the sliding receptive field and       
buffer the calculation results in other      
hardware memory where it could be reused       
by later calculations without requiring slow      
communications back and forth with the      
main processor. This would remove the      
need to resend the same pixel/activation      
value as many as 150 times in our small         
network and manyfold more in even larger       
networks. 
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