
Grayscale Image Processing

Cabir Yavuz, Tejas Sevak

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: cyavuz@oakland.edu, tjsevak@oakland.edu

Abstract—In this project, we made a small image processing

application on Zybo board. We read RGB bit stream binary file

from SD card, did grayscale image processing in embedded

system and put the processed image back to SD card.

I. INTRODUCTION

Nowadays, image processing applications with FPGAs are
quite popular because of its parallel computing capabilities.
They can do multiple operations at the same time. Image
processing requires a lot of computation therefore FPGA’s
true parallelism makes it great choice for hardware
acceleration.

Programming System (ARM processor) is capable of
doing this image processing but one of the important points of
this project is hardware acceleration. Also, FPGAs are
reconfigurable during run time. This gives us the ability to
change the bit stream, in other words, operation being done in
hardware, in runtime.

Main idea of this project is to put everything we mentioned
above together. We planned to use FPGA for image
processing. Also, we wanted to create multiple versions of the
Gray filter in SD card and load them using Dynamic Partial
Reconfiguration techniques we learned in this class.

II. METHODOLOGY

We used 24bit BMP files for this project. In this format,
each Red, Green and Blue color is stored in 8bits. This means
that their value can be in between 0-255. Originally, we
wanted to put BMP file directly to SD card and extract the
RGB bit stream in embedded system. However, we couldn’t
make it work for some resolutions. Therefore, we decided to
write our own Matlab scripts to generate bit stream file.

Matlabs imread function read several different image
formats and converts into MxNx3 matrix. M and N stands for
width and height of the image. After we convert this image
into bit stream we load it to SD card.

Our programming system loads this image from SD card.
Since we don’t know the real size of the image, we have to
create dynamic memory. We used the biggest memory portion
available in Zynq PSOC which is DDR. It has 512MB
capacity.

In our software system, we also included necessary drivers
in order to read/write SD card. Then we loaded image in to
dynamic memory successfully. We used AXI full interface in
order to pass data to hardware system. Because hardware
system does the actual process.

Since we don’t know the exact size of the image, we
should be prepared for big sized images. This means that we
might have to process data more than AXI FIFO is capable of.
Therefore, in our software part, we divided input stream data
in to small pieces and processed part by part. For example, if
we have a 100x100 image, this means that we need process
input bit stream data size is going to be around 30KB. This is
way more than FIFOs in FPGA can handle. So, we first read
first 100 bytes, send it to FPGA, get it back after processing
and store them in another dynamic memory. We do this in a
loop, so after processing small pieces we combine them
together and write in to SD card. This is one of the most
important points of software section.

After writing processed data into SD card, we read it via
Matlab scripts we wrote in to Matlab environment. In Matlab
we construct MxN size matrix from output bit stream. If you
realized output size is 1/3 of the input file because grayscale
filter converts RGB (24bit) values into Gray (8bit). Grayscale
filter is basically an average of RGB values in different
weights. After constructing final image, we show the result
with imshow Matlab function.

Originally, we wanted to create multiple versions of
grayscale filter with different weights so that we would see
more light or dark images based on different filter. We thought
planned to store these different bit streams in SD card and
change our filter in hardware system from programming
system using Dynamic Partial Reconfiguration techniques we
learned in this class. But time wasn’t enough to do that. Thus,
we only developed one filter. Now we will look closer to the
different part of our system

A. General Block Diagram of Hardware System

You can see the general block diagram of our hardware
system below. As you can see, we used the template we used
in this class. We used AXI Full interface in order to exchange
data between hardware and software system. There are
basically two FIFOs in order to handle input and outputs. One
of the Finite State Machine in the diagram controls these
FIFOs. Other one control input and output to the Gray Filter
module. Template we used were giving 2x32bit data to the
processing module. But we needed only one 32bit because we
can store all Red, Green, Blue values (24bit) in one 32bit.
Other information is hardcoded in Gray Filter module because
original idea was doing Dynamic Partial Reconfiguration.

B. Grayscale Filter Explanation

There are different ways of implementing Grayscale filter

but maybe one of the most used method is this formula;

𝐺𝑟𝑎𝑦 𝑉𝑎𝑙𝑢𝑒 =
(𝑅 ∗ %𝑋) + (𝐺 ∗ %𝑌) + (𝐵 ∗ %𝑍)

100

Where X + Y + Z = 100. This formula basically takes the

average of RGB values with different weights. The reason

why percentages can be different is because of human

nature. Our eyes are more sensitive to Green light than

Red and more sensitive to Red then blue. So, when we

compute gray value, we have to take this principle into

account. There is so many different possibilities but of

course there is a standard for this ratio. ITU-R BT.601is a

standard for this ratio.

0.299 * R + 0.587 * G + 0.114 * B

According to this standard, this is the best ratio of

converting RGB to Gray based on human nature.

As you can see from the diagram, Grayscale module takes

8 bit R, G, B values, 7 bits Rp, Gp, Bp values. Rp, Gp and

Bp are percentage values. These values will be between

0-100 therefore we only need 7bits to represent.

C. Grayscale Hardware Implementation

In order to implement Grayscale filter need

multiplexer, divider and adder circuits. Since we need to

do multiplication for each R, G, B values we could use

three different multipliers but this solution would be

waste of resources. Hence, we decided to use only one

with iteration.

 There is a multiplexer that selects each R, G, B

and Rp, Gp, Bp values accordingly. In every iteration

state machine takes first R and Rp then G and Gp then B

and Bp. The result of this multiplication is 15 bit since

inputs are 8 and 7bits.

We used Professor Llamocca’s multiplier and

divider circuits. There were three versions of these

circuits; combinatorial, iterative and pipelined. We

decided to use fully combinatorial.

As you can see from diagram above, we first

multiply the values and add them with previous one. If

this is the first run, second operand will be zero because

register output will be zero. We store this value in a

register.

After we are done with multiplication, we divide

the result by 100 because we multiplied by 100 at the

beginning. We need to convert it back to 0-255

resolution. This process is just for one pixel, we do that

for every pixel.

III. EXPERIMENTAL SETUP

We used Xilinx Vivado IDE and SDK tools for this

project. Harware part was developed in Vivado IDE and

software part was developed in SDK package. We used

Digilent Zybo board for implementation. Only additional part

we used is an SD card.

We used Matlab in order to generate input bit stream. We

copied the file to SD card from our PCs. We out the SD card

to board. We programmed the FPGA first. After that we

connected to COM in order to see logging information. Then

we programmed the Programming system. After that, we

copied output image from SD card to PC. We again ran the

matlab script in order to generate image. We showed the final

result in Matlab.

IV. RESULTS

You can see the input image below. This is a 365x419
image. It has different types of colors thus it’s suitable for our
testing.

After we ran our algorithm, you can see the output below;

CONCLUSIONS

As you can see above, we can successfully convert colored
image into gray image. However, we couldn’t finish Dynamic
Partial Reconfiguration part. If we could finish, we were going
to generate different variations of gray images, some darker
and lighter.

We also couldn’t finish reading directly from BMP file.
We were successfully extract RGB bit stream from BMP but
when we write it to the file, in some resolutions, Windows said
that file is corrupted. We didn’t want to spend more time on it
since we didn’t have much time.

In this project and class, we learned how to design an
embedded system including both hardware and software using
Xilinx tools. We are able to design hardware systems and
control them with C code from software. We also learned how
to do DPR but we were not able to show it.

REFERENCES

[1] Llmocca, Daniel. Reconfigurable Computing Research Laboratory. <
http://www.secs.oakland.edu/~llamocca/arithcores.html>.

[2] Seven Grayscale Conversions.., <http://www.tannerhelland.com/3643/
grayscale-image-algorithm-vb6/>.

