
Simple GPU

Anthony Bogedin
Michael Lohrer

GPU Architecture

AXI_LITE

4X4

MVP

Matrix

CAM2PIX

/

(optional)

Line Draw

PIX2MA

Converter

M_AXI

Clip

Detection
enable

address

data

Divide

(x,y,z)/wAXI_FULL

16 bit color

32 to

64

W_H

reg

frame

addr

Vector Matrix Multiply 4D

Contains 4 MADDs

C represents the

column

S1

S2

S3

S5

S4

start

init=’1’ store=’1’ ctrl=0

store=’1’ ctrl=1

1

0

store=’1’ ctrl=2

store=’1’ ctrl=3

done=’1’

X

+

accum_reg_[C]

Matrix Row

MUX

Vertex

Component MUX

x y z 1.0 ctrlr1[C] r2[C] r3[C] r4[C] ctrl

0.0

init

store

[C]_out

Matrix Multiply Simulation

1.5469 -0.0195 -1.0078 -0.0156

-0.0156 -1.9414 -1.7227 -1.4297

0.0 -1.9414 -0.2773 1.4297

0.0 0.0 -3.8867 -5.7148

Matrix Under Test:

X Y Z W

Vertex: 1.5313 -3.9023 -6.8945 -5.7305

Matlab Output Comparison:

Divider

Used the pipelined divider provided by Llamoca, but placed a wrapper around

it to handle negative numbers and overflow
To get a fractional output, W was truncated by 12 bits ([32 16]/[20 4] = [32 12])

The X, Y, & Z components of the vertex need to be normalized before being

mapped to screen space

Dividing all three by W ensures that all values are between -1 and 1 if they are on screen

Since the matrix multiply takes 4 clock cycles, X, Y, & Z are feed into the divider one at a time

After division, they are stored in 3 registers to await processing in the next stage

Divider Tests

Example value with : 1.53125 [32 16] / -5.6875 [20 4] = -0.26904296875 [32 12]

= FFFFFBB2 [32 12]

Result from divider: -0.26611328125 [32 12] = FFFFFBBE [32 12]

Camera to Screen
Space

Since Xcam and Ycam are
from -1 to 1

Just multiply by half of width
and height

Truncate fractional bits

Add half of width and height

X

+

reg

reg

>> 1

>> 12

Ypix

Ycamheight

h
_
h
e
ig

h
t

X

+

reg

reg

>> 1

>> 12

Xpix

Xcamwidth

h
_

w
id

th

Clip Detection

If the input X and Y

coordinates are within

the screen dimensions

and there is a valid

vertex, set visible high

v
is

ib
le

<

X
p

ix

w
id

th

>=

X
p

ix

0
.0

<

Y
p

ix

h
e

ig
h

t

>=

Y
p

ix

0
.0

<

Z
c
a

m

1
.0

>

Z
c
a

m

-1
.0

V
a

lid

0

reg

Screen to Array Index

frame_address = Xpix + width * Ypix

Multiply Ypix by width to jump to the correct

row

Add Xpix to jump to the correct column

Add 2 zeros for AXI word alignment

X

+

<< 2

Xpix Ypix width

reg

frame_address

SGPU Simulation

Integer Line Drawing

Bresenham's line algorithm:

plotLine(x0,y0, x1,y1)

dx=x1-x0

dy=y1-y0

DIF = 4*dy - dx

y=y0

for x from x0 to x1

plot(x,y)

DIF = DIF + (2*dy)

if DIF > 0

y = y+1

DIF = DIF - (2*dx)

Line Drawing State Machine

Using two coordinates in Screen Space,

trace line between them

Takes two clock cycles

This can saturate the AXI bus

START

PRIME

DONE

RUN_DEC

E

dif=’1’ xstore=1

ystore=1 mux=0

1

0

dif=’1’ xstore=’1’

mux = 1 valid=’1’

dif=’1’ ystore=’1’

mux=2

RUN_INC

done=’1’

P

0

1

D

Z

Line Drawing Data Path

Every pixel cycle +1 to x

+1 to y dependant on dif

DIF_REGE

mux

dy&”00” dx

- -+

dx&’0’dy&’0’

>0

Z

dif

X_REGE

+1

mux

x0m

xstore

x_out

==
x1m

D

Y_REGE

+1

mux

y0m

ystore

y_out

plotLine(x0,y0, x1,y1)

dx=x1-x0

dy=y1-y0

DIF = 4*dy - dx

y=y0

for x from x0 to x1

plot(x,y)

DIF = DIF + (2*dy)

if DIF > 0

y = y+1

DIF = DIF - (2*dx)

Limits of Simple Line Drawing

Only increments

Y increments at most once per X

increment

Only draws lines in the first 45° of the

first quadrant

+Y

+X

Folding Logic

Uses inputs and their

negations

MUXs folds the inputs to

draw line to always be

positive and ensure that

x is larger than y

Final MUX folds values

back into appropriate

quadrant slice

Additional details

When line drawing is active, two fifos are added into the data flow.

Drawing a line can take much longer than transforming a vertex into pixel space.

Other simple constructs and state machine glue logic from the labs and class.

32 to 64 bit temporal multiplexing for input

SM to give the next set of vertices to the line drawer when it is ready and there are two vertices

available in the fifo’s

Line Drawing Simulation

Now that we’ve got a GPU, we add AXI Interfaces to talk to the CPU and directly

to memory and then wrap it up as an IP core.

GPU in the Big Picture

AXI_LITE

4X4

MVP

Matrix

CAM2PIX
PIX2MA

Converter

M_AXI

Clip

Detection
enable

address

data

Divide

(x,y,z)/wAXI_FULL

16 bit color

32 to

64

W_H

reg

frame

addr

System Architecture

PS

VDMA

VDMA

Disp Ctrl

Disp Ctrl

VGA

HDMI TX HDMI

HP0

HP1

SGPU

SGPU

GP1

Pixels

Vertices

Config

Pixels

Vertices

Config

GP0 Sync
INT

From Zynq TRM

UG585 (v1.10)

p. 64

AXI Lite Example Simulation

The AXI Lite interface is used for configuring the video frame’s height and width, the base frame address,

and the PV matrix.

AXI Slave Full Example Simulation

First write loads X and Y Second write loads Z and Color

AXI Master Full Example Simulation

Vivado ILA (Chipscope Pro)

The exact processor GP and HP AXI interfaces are hard to simulate since we don’t have a testbench for

them. Using Vivado Integrated Logic Analyzer (ILA) we can debug hardware while it is running.

Problems

AXI has two separate handshake signals

1 for the address

1 for the data

When the system first initializes, it seems that the address “ready” goes high but

the data does not causing the two output fifos to get out of sync

Line Drawing still has issues when a line leaves the screen edges

The screen clip module ensures that a pixel is never sent to a memory location outside of the

frame buffer, but the drawing starts to flicker as if vertices are being lost

Demo and Questions

