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Abstract—A Graphics Processing Unit (GPU) is important 

for many user interface based systems.  By offloading a 

specific set of mathematically intense image generation 

operations from the Central Processing Unit (CPU), it frees 

up processing time for more general operations.  In this 

project we developed a subset of these operations to run on 

the ZYNQ PL hardware and interfaced this newly created 

Simple GPU with the ZYNQ’s built in ARM microprocessor.  

The first and secondary goals were achieved successfully;  

the Simple GPU was capable of projecting CPU-designated 

three dimensional coordinates onto a display and optionally 

draw lines between them.  Due to time constraints, the 

system lacks stability in several cases and future work could 

center on correcting these design flaws.  The system could 

also be extended with more advanced functionality, such as 

color interpolation, triangle filling, and UV mapping. 

I. INTRODUCTION 

An increasingly common requirement for many 
embedded systems is the necessity of providing a visually 
appealing interface for a user.  Since a CPU must perform 
the primary function for a system, these older interfaces 
were typically limited to fixed function displays or basic 
text displays.  Newer systems overcome this limitation by 
adding a coprocessor, the GPU, which handles the 
generation of images for user feedback. 

A GPU consists of two primary functions.  First, as a 
vector processor, it performs the four dimensional math 
necessary to project three dimensional points onto a 
plane.  Second, as a pixel processor, it directly accesses 
memory in order to store correctly colored pixels onto a 
frame buffer that can be displayed on a screen without 
CPU involvement.  A more feature rich system would 
provide more specific functionality under these two 
categories, but the focus of this project was to produce a 
system with the minimum number of component 
necessary to provide the basic functionality of a GPU. 

The Simple GPU consists of a several stage pipeline, 
consisting of abstract mathematical functions and 

graphics focused algorithms not covered in class.  
Namely, a four dimensional matrix multiply, a divider, a 
transform from normalized camera space to screen 
dimensions, a memory address calculator, and 
Bresenham’s line drawing algorithm.  This system was 
developed in VHDL for the purpose of being placed on 
the programmable logic of the ZYNQ chip, a CPU-FPGA 
hybrid.  Because this was designed for an FPGA and 
consisted of many mathematical operations, the 
components were written to operate on fixed point 
numbers as the LUT requirements for floating point 
support on an FPGA are quite large. 

The inputs to the GPU are the memory address of the 
current frame buffer, the Model View Perspective (MVP) 
matrix and the vertices to draw.  The GPU transforms the 
vertices into the camera’s view, and then calculates the 
address to store the output.  The output of the GPU is 
stored in a frame buffer in the DDR memory onboard the 
Zybo.  This frame buffer is then read by the display 
controller to show on the screen.  The display controller 
was created using IP cores from Xilinx [2] and Digilent 
[3-4]. 

To send data to the GPU from the processor, two 
different interfaces are used.  An AXI Lite interface 
provides easy configuration of parameters that do not 
change often, such as the MVP matrix.  A Slave AXI Full 
interface allows sending of vertices and their color 
quickly to the GPU.  Finally, a Master AXI Full interface 
allows sending pixel data straight to DDR memory 
through the High-Performance AXI ports of the Zynq PS. 

II. METHODOLOGY 

Each major component in the System pictured in 
figure 1.   

A. Matrix Multiplication 

A matrix multiplication is a binary operation that 
consists of multiplying every row of one matrix with the 
column of another matrix element wise, then summing the 

Figure 1. Simple GPU Architecture 



results of each these operations to create a new entry into 
the output matrix.  For the purposes of this project that 
consisted of multiplying a 1X4 matrix (the vertex) and the 
4X4 MVP matrix.  The equation for this is presented 
below.   
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A full 4X4 matrix is necessary to perform all the 

transformations necessary to move a vertex from world 
space to view space, as shown in [5-6]. The input vertices 
are only three dimensional, so they are all placed on the 
same plane in the fourth dimension.  Choosing this plane 
to be one simplifies later logic.  Since it was known that 
the vertices streaming in were going to take longer than 
one clock cycle to transfer, the matrix multiply operation 
was only partially parallelized.  Figure 2 shows a single 
multiply accumulate unit.  Four of these were placed in 
hardware to handle each column of the 4X4 matrix.  The 
state machine shown to the left controls each of the 
multiply accumulate units.  As shown this will take 4 
clock cycles to complete a single matrix multiplication.   

 
Figure 2. Matrix multiply state machine and datapath. 

B. Divider 

The divider uses the pipelined version provided by 
Llamocca, but wrapped with some additional logic to 
handle negative numbers.  The divider is important 
because the results while in view space after the matrix 
multiplication are not normalized to the view edges [6]. 
The scales can change dramatically depending on the 
distance between the camera and the vertex in question.  
Since the w component was known to be one, it was used 

to normalize the other three.  After this the values of x, y, 
and z will be between -1 and 1 if they are viewable. 

The pipelined divider can take a new value each clock 
cycle, but the matrix multiply takes four clock cycles to 
complete.  Thus, x, y, and z could be placed consecutively 
on a single divider and not slow the system. 

C. Camera to Screen Space 

With the vertices in view space, they need to be scaled 
to the current screen resolution.  Since the values are 
normalized this simply entails multiplying by half of the 
screens pixel width and height.  It finishes with adding the 
width and height to bring the values positive if they are 
visible.  Positive values are necessary for addressing into 
memory. 

 
Figure 3. Camera to screen space datapath. 

D. Screen Clip Detection 

As mentioned above, vertices can be off screen.  Since 
drawing consists of writing to an array, it must not write 
outside the boundaries and corrupt main memory.  The 
clip detection checks the position of the vertex and only 
sets the write signal high if the vertex is visible on screen. 

 
Figure 4. Screen clip detection datapath. 



E. Screen Space to Memory 

The final step is to 
convert the screen 
coordinates of the vertex 
into an offset into an array.  
This is multiplying the y 
coordinate by the width to 
bring the index to the correct 
row and adds the x 
coordinate to bring the index 
to the correct column.  This 
is a pixel index, but AXI is 
expecting a byte address.  
Since a pixel consists of 4 
bytes, two least significant 
zeros are added to the 
address. 

F. Line Drawing 

Line drawing takes two 
screen space vertices and draws a single pixel width line 
between them.  The full algorithm is presented in the 
figure 6 pseudocode.  “DIF” represents a replacement for 
error from normal fractional based methods, allowing this 
to be integer math.  Every loop of the algorithm x is 
incremented and the difference between the y coordinates 
is added to DIF.  When DIF reaches zero y is also 
incremented and the difference between the x coordinates 
is subtracted from DIF.  A simple example shows that if 
the x distance is three times the y distance, DIF will reach 
zero every three increments of x.  Thus a line with the 
proper slope of ⅓ will be drawn. 

 

plotLine(x0,y0, x1,y1) 

  dx=x1-x0 

  dy=y1-y0 

 

  DIF = 4*dy - dx 

  y=y0 

 

  for x from x0 to x1 

    plot(x,y) 

    DIF = DIF + (2*dy) 

    if DIF > 0 

      y = y+1 

      DIF = DIF - (2*dx) 

Figure 6. Bresenham's line drawing algorithm pseudocode. 

This was implemented using three data paths and a 5-
state machine.  First, the DIF reg is initialized with the 
negative of the x distance and is then added or subtracted 
as specified in the above pseudocode.  The x and y 
outputs are then incremented in the cases also as specified 
in the above pseudocode. 

 

 
Figure 7. Line drawing state machine and datapath. 

This has a major limitation.  It only increments x, and 
y; limiting the direction the line can be drawn to the first 

quadrant of the 
coordinate space.  
Also since y only 
increments when x 
increments, the 
greatest slope is 
limited to 1, so lines 
can only be drawn 
within the first 45° of 
the coordinate space 
as shown in figure 8.  
Thus, the blue line 

cannot be drawn. 
To overcome this 

limitation, the rest of 
the coordinate space needs to be folded into that 45° 
space.  Then the output needs to be unfolded to the correct 
quadrant at the output for each pixel of the line.  The 
block diagram is shown in figure to 9.  The important part 
is the three comparison operators, which detects the 
eighth of the coordinate space that contains the line. 

 
Figure 9. Folding MUX datapath. 

Figure 5. Screen space to 

framebuffer datapath. 

Figure 8. Line drawing limitation. 



A parameter of the Simple GPU component allows it 
to operate in either line-drawing or dot-drawing mode.  
This parameter is set at design-time so that the minimal 
resources are used for the desired operation in any given 
GPU. 

G. Configuration Interface 

 The Simple GPU needs several parameters to be 
set before it can be used, including the MVP matrix.  
Since the MVP matrix changes at most every frame, a 
high-speed interface is not required for setting its values.  
Therefore a set of registers with an AXI-Lite interface is 
used to set the 16 values of the matrix.  Each matrix value 
is a 16-bit number, and so two could be packed into the 
same 32-bit register, but for simplicity only the lower 16 
bits of each register was used.  This also leaves room for 
upgrading to 32-bit fixed-point or floating-point numbers 
in the future without changing the interface.  Two other 
parameters that are set over the configuration interface are 
the screen height and width.  These are used in the 
conversion process to pixel coordinates, in detecting 
screen clip, and for generating the memory address of the 
pixel.  The last parameter set with the configuration 
interface is the address to the start of the frame buffer in 
memory.  Without this address, the GPU would not know 
where to store the pixels. 

H. Vertex Interface 

 The vertex interface has the job of receiving 
vertices from the CPU and storing them for use by the 
GPU.  It achieves this by using a full AXI bus interface 
with support for bursts.  Bursts would provide for faster 
transfers of vertices, however while the GPU supports 
burst writes our implementation has no DMA and so only 
single writes occur. 

The vertices are sent in two 32-bit writes; the X and Y 
coordinate in the first and the Z and Color in the second.  
This limits the GPU to 16-bit coordinates and color, so 
the vertex-sending process would need to be modified to 
increase the resolution or world size.  After a vertex is 
received on the AXI bus, it is stored in a FIFO and the 
read data and enable are exposed to the GPU. 

I. Memory Interface 

 The output of the GPU is an address into the 
frame buffer and a color to write to that address.  In order 
to write the colors to the framebuffer in DDR memory 
quickly, a High-Performance (HP) AXI port is used.  The 
HP ports only pass through one AXI interconnect in the 
PS system, which means faster access to the DDR 
controller than the General Purpose (GP) ports - about 
3,200 Mb/s in both read and write.  The AXI interface on 
the GPU side  has to be a master, since the HP ports are 
slaves.  Burst modes are not supported for the GPU 
master AXI port, since all burst modes require addresses 
either to be the same or sequential.  The GPU will not 
generally be writing to sequential addresses so 
unfortunately burst modes are not possible without more 
buffering and logic.  Two FIFOs are created to store the 

addresses and colors generated from the GPU, with the 
read interfaces exposed to the GPU.  The write interfaces 
are utilized by the master AXI, and whenever the both 
have data a write is started.  The addresses stored in the 
FIFO are relative to the start of the framebuffer, so as a 
last step before writing, the address coming out of the 
FIFO is added to the frame buffer’s base address to 
transform it into global memory address space. 

J. High-Level Schematic 

A schematic of the important components in the entire 
system is shown in the figure 10.  This is one possible 
configuration; as many GPUs as fit in the FPGA fabric 
could be used.  Here we use two: one for dot-drawing and 
one for line-drawing.  The dot-drawing GPU uses about 
2000 LUTs, 1.5 36k BRAM tiles, and 7 DSPs, while the 
line-drawing GPU uses about 2500 LUTs, 2.5 BRAM 
tiles, and 7 DSPs.  The two GPUs share an HP port, and 
the Display Controllers share another.  Since the the 
display controllers are only reading the memory and the 
GPUs are only writing to it, they really could have all 
shared the same port and not sacrificed any bandwidth.  
GP0 is used for configuring both GPUs as well as the 
VDMA and Display Controllers - which is not shown in 
the diagram for simplicity.  GP1 is used solely to send 
vertices to both GPUs. 

The two display controllers allow for both VGA and 
HDMI output.  Each VDMA receives a sync signal from 
its associated Display Controller to signal the beginning 
of a new frame.  When a VDMA sees a pulse on the sync 
signal, it begins reading the framebuffer directly from 
DDR memory.  There are three framebuffers, and which 
one the VDMA is reading from is configured by the CPU.  
The sync signal is also sent to the PS as an interrupt input. 

Each frame, the CPU switches the framebuffer of the 
GPU, writes vertices to the GPUs, the GPUs write pixels 
into the new framebuffer, and the CPU waits for the 
Display Controller to signal an end of its current frame on 
the sync signal.  Then the CPU updates the VDMAs to the 
new framebuffer, causing them to send the new frame to 
the Display Controllers.  After each frame the CPU 
switches the framebuffer and starts over.  The whole 
operation happens at a rate of 60 frames per second, and 
is capable of displaying up to 1080p resolution on both 
the VGA and HDMI outputs. 

 
Figure 10. System level design. 



III. EXPERIMENTAL SETUP 

Each non-trivial component of the GPU that we 
created has an associated testbench.  This includes the 4x4 
matrix multiply, the line-drawing component, and one to 
test several representative values of the entire GPU.  To 
test the entire GPU including AXI interfaces however 
requires a bit more work.  A basic AXI lite master 
testbench model from [7] provided a good start, but the 
Simple GPU has a slave full and a master full interface as 
well.  The slave full AXI interface - requiring a master 
full interface testbench to test - is easy to simulate 
because all of the extra inputs of the full over the lite 
interface can be set to constants.  The master full AXI 
interface is a bit trickier.  For that a slave AXI full model 
had to be created, which was based off of the example 
master AXI interface generated by Vivado.  Using all 
three AXI interface testbench models, it is possible to 
simulate the entire GPU system from start to end.  Using 
this testbench, the configuration registers were set up, and 
several vertices written to the GPU.  The entire system 
was observed as well the final pixel output being written 
into the slave representing the HP ports.  Below is shown 
an AXI write of a pixel from the GPU. 

In addition to the simulations that were run, 
debugging of the hardware while it was running was used 
to verify the functionality of the AXI communication with 
the processor.  Figure one shows the result of an AXI 
write on the Master AXI bus created in the Simple GPU 
component.  In this case, the processor’s High-
Performance AXI port was the slave.  The slave can be 
seen setting AWREADY, AREADY, and BVALID 
indicating a successful write. 

Debugging of running hardware was achieved using 
Chipscope Pro debug cores, now also known as Vivado 

ILA.  This method places a debug core on-chip, which 
samples the desired signals every clock cycle.  The 
sampled signals are put into a FIFO and can be sent to the 
PC for viewing.  Since the bandwidth between the debug 
core and the PC isn’t typically high enough to send all the 
signal’s data, a trigger is used to tell the core when to 
send data.  For our purposes, we set the trigger to the 
AWVALID signal so that we would see an AXI 
transaction occurring. 

IV. RESULTS 

The resulting system was made up of two GPUs: one 
capable of dot-drawing and one capable of line-drawing.  
As can be seen in the video of the project, available at [1], 
several long lines and many dots can be drawn on the 
screen via the GPUs.  Figure 13 shows a picture of the 
running system as well.  The line-drawing GPU was used 
to form a cube, while one hundred dots were drawn with 
the dot-drawing GPU to create a sparkler effect.  If the 
number of dots drawn increased too much, beyond 200, 
the colors became offset by a couple dots: so a dot that 
was supposed to be red may show up green for example. 

Line drawing also showed issues in two cases.  If lines 
with different colors were drawn, the colors would bleed 
into the next line.  Also if lines were to go off the edge of 
the screen, a flickering effect was observed, with lines 
disappearing and sometimes connecting the wrong 
endpoints.  These are most probably resulting from design 
issues with the FIFOs.  If the two separate streams of data 
containing color and memory addresses were to get out of 
sync these effects could to be expected. 

Figure 11. Master AXI write from GPU. 

Figure 12. Master AXI write viewed on chip with Vivado ILA. 



 
Figure 13. On-screen drawing of cube and sparkler. 

CONCLUSIONS 

The next step for the GPU would be to allow for entire 
triangle drawing.  Just as dot drawing was upgraded to 
line drawing, line drawing can be upgraded to triangle 
drawing.  Three vertices would be input instead of two, 
and the pixel processor would have to fill in the area 
between the vertices.  This is a big step up in complexity 
and in the time required to process the vertex stream. 

Another improvement for the GPU system as a whole 
would be to add multiple pipelines of vertex calculations 
and pixel processing.  For the single dot mode, this is not 
necessary as the CPU cannot send vertices fast enough to 
overflow a single GPU pipeline.  But in the line drawing 
or proposed triangle drawing modes, the pixel processor 
can overflow its FIFOs.  Adding more GPU pipelines 
would allow sharing of the workload between the multiple 
pipelines. 
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