
Simple Graphics Processing Unit on an FPGA

Anthony Bogedin, Michael Lohrer

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: ajbogedi@oakland.edu, mflohrer@oakland.edu

Abstract—A Graphics Processing Unit (GPU) is important

for many user interface based systems. By offloading a

specific set of mathematically intense image generation

operations from the Central Processing Unit (CPU), it frees

up processing time for more general operations. In this

project we developed a subset of these operations to run on

the ZYNQ PL hardware and interfaced this newly created

Simple GPU with the ZYNQ’s built in ARM microprocessor.

The first and secondary goals were achieved successfully;

the Simple GPU was capable of projecting CPU-designated

three dimensional coordinates onto a display and optionally

draw lines between them. Due to time constraints, the

system lacks stability in several cases and future work could

center on correcting these design flaws. The system could

also be extended with more advanced functionality, such as

color interpolation, triangle filling, and UV mapping.

I. INTRODUCTION

An increasingly common requirement for many
embedded systems is the necessity of providing a visually
appealing interface for a user. Since a CPU must perform
the primary function for a system, these older interfaces
were typically limited to fixed function displays or basic
text displays. Newer systems overcome this limitation by
adding a coprocessor, the GPU, which handles the
generation of images for user feedback.

A GPU consists of two primary functions. First, as a
vector processor, it performs the four dimensional math
necessary to project three dimensional points onto a
plane. Second, as a pixel processor, it directly accesses
memory in order to store correctly colored pixels onto a
frame buffer that can be displayed on a screen without
CPU involvement. A more feature rich system would
provide more specific functionality under these two
categories, but the focus of this project was to produce a
system with the minimum number of component
necessary to provide the basic functionality of a GPU.

The Simple GPU consists of a several stage pipeline,
consisting of abstract mathematical functions and

graphics focused algorithms not covered in class.
Namely, a four dimensional matrix multiply, a divider, a
transform from normalized camera space to screen
dimensions, a memory address calculator, and
Bresenham’s line drawing algorithm. This system was
developed in VHDL for the purpose of being placed on
the programmable logic of the ZYNQ chip, a CPU-FPGA
hybrid. Because this was designed for an FPGA and
consisted of many mathematical operations, the
components were written to operate on fixed point
numbers as the LUT requirements for floating point
support on an FPGA are quite large.

The inputs to the GPU are the memory address of the
current frame buffer, the Model View Perspective (MVP)
matrix and the vertices to draw. The GPU transforms the
vertices into the camera’s view, and then calculates the
address to store the output. The output of the GPU is
stored in a frame buffer in the DDR memory onboard the
Zybo. This frame buffer is then read by the display
controller to show on the screen. The display controller
was created using IP cores from Xilinx [2] and Digilent
[3-4].

To send data to the GPU from the processor, two
different interfaces are used. An AXI Lite interface
provides easy configuration of parameters that do not
change often, such as the MVP matrix. A Slave AXI Full
interface allows sending of vertices and their color
quickly to the GPU. Finally, a Master AXI Full interface
allows sending pixel data straight to DDR memory
through the High-Performance AXI ports of the Zynq PS.

II. METHODOLOGY

Each major component in the System pictured in
figure 1.

A. Matrix Multiplication

A matrix multiplication is a binary operation that
consists of multiplying every row of one matrix with the
column of another matrix element wise, then summing the

Figure 1. Simple GPU Architecture

results of each these operations to create a new entry into
the output matrix. For the purposes of this project that
consisted of multiplying a 1X4 matrix (the vertex) and the
4X4 MVP matrix. The equation for this is presented
below.

 𝑣𝑥 𝑣𝑦 𝑣𝑧 𝑣𝑤

𝑚𝑥𝑥 𝑚𝑥𝑦

𝑚𝑦𝑥 𝑚𝑦𝑦

𝑚𝑥𝑧 𝑚𝑥𝑤

𝑚𝑦𝑧 𝑚𝑦𝑤

𝑚𝑧𝑥 𝑚𝑧𝑦

𝑚𝑤𝑥 𝑚𝑤𝑦

𝑚𝑧𝑧 𝑚𝑧𝑤

𝑚𝑤𝑧 𝑚𝑤𝑤

 =

 𝑣𝑥𝑚𝑥𝑥 + 𝑣𝑦𝑚𝑦𝑥 + 𝑣𝑧𝑚𝑧𝑥 + 𝑣𝑤𝑚𝑤𝑥 …

A full 4X4 matrix is necessary to perform all the

transformations necessary to move a vertex from world
space to view space, as shown in [5-6]. The input vertices
are only three dimensional, so they are all placed on the
same plane in the fourth dimension. Choosing this plane
to be one simplifies later logic. Since it was known that
the vertices streaming in were going to take longer than
one clock cycle to transfer, the matrix multiply operation
was only partially parallelized. Figure 2 shows a single
multiply accumulate unit. Four of these were placed in
hardware to handle each column of the 4X4 matrix. The
state machine shown to the left controls each of the
multiply accumulate units. As shown this will take 4
clock cycles to complete a single matrix multiplication.

Figure 2. Matrix multiply state machine and datapath.

B. Divider

The divider uses the pipelined version provided by
Llamocca, but wrapped with some additional logic to
handle negative numbers. The divider is important
because the results while in view space after the matrix
multiplication are not normalized to the view edges [6].
The scales can change dramatically depending on the
distance between the camera and the vertex in question.
Since the w component was known to be one, it was used

to normalize the other three. After this the values of x, y,
and z will be between -1 and 1 if they are viewable.

The pipelined divider can take a new value each clock
cycle, but the matrix multiply takes four clock cycles to
complete. Thus, x, y, and z could be placed consecutively
on a single divider and not slow the system.

C. Camera to Screen Space

With the vertices in view space, they need to be scaled
to the current screen resolution. Since the values are
normalized this simply entails multiplying by half of the
screens pixel width and height. It finishes with adding the
width and height to bring the values positive if they are
visible. Positive values are necessary for addressing into
memory.

Figure 3. Camera to screen space datapath.

D. Screen Clip Detection

As mentioned above, vertices can be off screen. Since
drawing consists of writing to an array, it must not write
outside the boundaries and corrupt main memory. The
clip detection checks the position of the vertex and only
sets the write signal high if the vertex is visible on screen.

Figure 4. Screen clip detection datapath.

E. Screen Space to Memory

The final step is to
convert the screen
coordinates of the vertex
into an offset into an array.
This is multiplying the y
coordinate by the width to
bring the index to the correct
row and adds the x
coordinate to bring the index
to the correct column. This
is a pixel index, but AXI is
expecting a byte address.
Since a pixel consists of 4
bytes, two least significant
zeros are added to the
address.

F. Line Drawing

Line drawing takes two
screen space vertices and draws a single pixel width line
between them. The full algorithm is presented in the
figure 6 pseudocode. “DIF” represents a replacement for
error from normal fractional based methods, allowing this
to be integer math. Every loop of the algorithm x is
incremented and the difference between the y coordinates
is added to DIF. When DIF reaches zero y is also
incremented and the difference between the x coordinates
is subtracted from DIF. A simple example shows that if
the x distance is three times the y distance, DIF will reach
zero every three increments of x. Thus a line with the
proper slope of ⅓ will be drawn.

plotLine(x0,y0, x1,y1)

 dx=x1-x0

 dy=y1-y0

 DIF = 4*dy - dx

 y=y0

 for x from x0 to x1

 plot(x,y)

 DIF = DIF + (2*dy)

 if DIF > 0

 y = y+1

 DIF = DIF - (2*dx)

Figure 6. Bresenham's line drawing algorithm pseudocode.

This was implemented using three data paths and a 5-
state machine. First, the DIF reg is initialized with the
negative of the x distance and is then added or subtracted
as specified in the above pseudocode. The x and y
outputs are then incremented in the cases also as specified
in the above pseudocode.

Figure 7. Line drawing state machine and datapath.

This has a major limitation. It only increments x, and
y; limiting the direction the line can be drawn to the first

quadrant of the
coordinate space.
Also since y only
increments when x
increments, the
greatest slope is
limited to 1, so lines
can only be drawn
within the first 45° of
the coordinate space
as shown in figure 8.
Thus, the blue line

cannot be drawn.
To overcome this

limitation, the rest of
the coordinate space needs to be folded into that 45°
space. Then the output needs to be unfolded to the correct
quadrant at the output for each pixel of the line. The
block diagram is shown in figure to 9. The important part
is the three comparison operators, which detects the
eighth of the coordinate space that contains the line.

Figure 9. Folding MUX datapath.

Figure 5. Screen space to

framebuffer datapath.

Figure 8. Line drawing limitation.

A parameter of the Simple GPU component allows it
to operate in either line-drawing or dot-drawing mode.
This parameter is set at design-time so that the minimal
resources are used for the desired operation in any given
GPU.

G. Configuration Interface

 The Simple GPU needs several parameters to be
set before it can be used, including the MVP matrix.
Since the MVP matrix changes at most every frame, a
high-speed interface is not required for setting its values.
Therefore a set of registers with an AXI-Lite interface is
used to set the 16 values of the matrix. Each matrix value
is a 16-bit number, and so two could be packed into the
same 32-bit register, but for simplicity only the lower 16
bits of each register was used. This also leaves room for
upgrading to 32-bit fixed-point or floating-point numbers
in the future without changing the interface. Two other
parameters that are set over the configuration interface are
the screen height and width. These are used in the
conversion process to pixel coordinates, in detecting
screen clip, and for generating the memory address of the
pixel. The last parameter set with the configuration
interface is the address to the start of the frame buffer in
memory. Without this address, the GPU would not know
where to store the pixels.

H. Vertex Interface

 The vertex interface has the job of receiving
vertices from the CPU and storing them for use by the
GPU. It achieves this by using a full AXI bus interface
with support for bursts. Bursts would provide for faster
transfers of vertices, however while the GPU supports
burst writes our implementation has no DMA and so only
single writes occur.

The vertices are sent in two 32-bit writes; the X and Y
coordinate in the first and the Z and Color in the second.
This limits the GPU to 16-bit coordinates and color, so
the vertex-sending process would need to be modified to
increase the resolution or world size. After a vertex is
received on the AXI bus, it is stored in a FIFO and the
read data and enable are exposed to the GPU.

I. Memory Interface

 The output of the GPU is an address into the
frame buffer and a color to write to that address. In order
to write the colors to the framebuffer in DDR memory
quickly, a High-Performance (HP) AXI port is used. The
HP ports only pass through one AXI interconnect in the
PS system, which means faster access to the DDR
controller than the General Purpose (GP) ports - about
3,200 Mb/s in both read and write. The AXI interface on
the GPU side has to be a master, since the HP ports are
slaves. Burst modes are not supported for the GPU
master AXI port, since all burst modes require addresses
either to be the same or sequential. The GPU will not
generally be writing to sequential addresses so
unfortunately burst modes are not possible without more
buffering and logic. Two FIFOs are created to store the

addresses and colors generated from the GPU, with the
read interfaces exposed to the GPU. The write interfaces
are utilized by the master AXI, and whenever the both
have data a write is started. The addresses stored in the
FIFO are relative to the start of the framebuffer, so as a
last step before writing, the address coming out of the
FIFO is added to the frame buffer’s base address to
transform it into global memory address space.

J. High-Level Schematic

A schematic of the important components in the entire
system is shown in the figure 10. This is one possible
configuration; as many GPUs as fit in the FPGA fabric
could be used. Here we use two: one for dot-drawing and
one for line-drawing. The dot-drawing GPU uses about
2000 LUTs, 1.5 36k BRAM tiles, and 7 DSPs, while the
line-drawing GPU uses about 2500 LUTs, 2.5 BRAM
tiles, and 7 DSPs. The two GPUs share an HP port, and
the Display Controllers share another. Since the the
display controllers are only reading the memory and the
GPUs are only writing to it, they really could have all
shared the same port and not sacrificed any bandwidth.
GP0 is used for configuring both GPUs as well as the
VDMA and Display Controllers - which is not shown in
the diagram for simplicity. GP1 is used solely to send
vertices to both GPUs.

The two display controllers allow for both VGA and
HDMI output. Each VDMA receives a sync signal from
its associated Display Controller to signal the beginning
of a new frame. When a VDMA sees a pulse on the sync
signal, it begins reading the framebuffer directly from
DDR memory. There are three framebuffers, and which
one the VDMA is reading from is configured by the CPU.
The sync signal is also sent to the PS as an interrupt input.

Each frame, the CPU switches the framebuffer of the
GPU, writes vertices to the GPUs, the GPUs write pixels
into the new framebuffer, and the CPU waits for the
Display Controller to signal an end of its current frame on
the sync signal. Then the CPU updates the VDMAs to the
new framebuffer, causing them to send the new frame to
the Display Controllers. After each frame the CPU
switches the framebuffer and starts over. The whole
operation happens at a rate of 60 frames per second, and
is capable of displaying up to 1080p resolution on both
the VGA and HDMI outputs.

Figure 10. System level design.

III. EXPERIMENTAL SETUP

Each non-trivial component of the GPU that we
created has an associated testbench. This includes the 4x4
matrix multiply, the line-drawing component, and one to
test several representative values of the entire GPU. To
test the entire GPU including AXI interfaces however
requires a bit more work. A basic AXI lite master
testbench model from [7] provided a good start, but the
Simple GPU has a slave full and a master full interface as
well. The slave full AXI interface - requiring a master
full interface testbench to test - is easy to simulate
because all of the extra inputs of the full over the lite
interface can be set to constants. The master full AXI
interface is a bit trickier. For that a slave AXI full model
had to be created, which was based off of the example
master AXI interface generated by Vivado. Using all
three AXI interface testbench models, it is possible to
simulate the entire GPU system from start to end. Using
this testbench, the configuration registers were set up, and
several vertices written to the GPU. The entire system
was observed as well the final pixel output being written
into the slave representing the HP ports. Below is shown
an AXI write of a pixel from the GPU.

In addition to the simulations that were run,
debugging of the hardware while it was running was used
to verify the functionality of the AXI communication with
the processor. Figure one shows the result of an AXI
write on the Master AXI bus created in the Simple GPU
component. In this case, the processor’s High-
Performance AXI port was the slave. The slave can be
seen setting AWREADY, AREADY, and BVALID
indicating a successful write.

Debugging of running hardware was achieved using
Chipscope Pro debug cores, now also known as Vivado

ILA. This method places a debug core on-chip, which
samples the desired signals every clock cycle. The
sampled signals are put into a FIFO and can be sent to the
PC for viewing. Since the bandwidth between the debug
core and the PC isn’t typically high enough to send all the
signal’s data, a trigger is used to tell the core when to
send data. For our purposes, we set the trigger to the
AWVALID signal so that we would see an AXI
transaction occurring.

IV. RESULTS

The resulting system was made up of two GPUs: one
capable of dot-drawing and one capable of line-drawing.
As can be seen in the video of the project, available at [1],
several long lines and many dots can be drawn on the
screen via the GPUs. Figure 13 shows a picture of the
running system as well. The line-drawing GPU was used
to form a cube, while one hundred dots were drawn with
the dot-drawing GPU to create a sparkler effect. If the
number of dots drawn increased too much, beyond 200,
the colors became offset by a couple dots: so a dot that
was supposed to be red may show up green for example.

Line drawing also showed issues in two cases. If lines
with different colors were drawn, the colors would bleed
into the next line. Also if lines were to go off the edge of
the screen, a flickering effect was observed, with lines
disappearing and sometimes connecting the wrong
endpoints. These are most probably resulting from design
issues with the FIFOs. If the two separate streams of data
containing color and memory addresses were to get out of
sync these effects could to be expected.

Figure 11. Master AXI write from GPU.

Figure 12. Master AXI write viewed on chip with Vivado ILA.

Figure 13. On-screen drawing of cube and sparkler.

CONCLUSIONS

The next step for the GPU would be to allow for entire
triangle drawing. Just as dot drawing was upgraded to
line drawing, line drawing can be upgraded to triangle
drawing. Three vertices would be input instead of two,
and the pixel processor would have to fill in the area
between the vertices. This is a big step up in complexity
and in the time required to process the vertex stream.

Another improvement for the GPU system as a whole
would be to add multiple pipelines of vertex calculations
and pixel processing. For the single dot mode, this is not
necessary as the CPU cannot send vertices fast enough to
overflow a single GPU pipeline. But in the line drawing
or proposed triangle drawing modes, the pixel processor
can overflow its FIFOs. Adding more GPU pipelines
would allow sharing of the workload between the multiple
pipelines.

REFERENCES

[1] Video of project:

https://drive.google.com/open?id=0B4z_15QSfhUSOWNWWjhE
Z24xTEE

[2] Xilinx AXI VDMA datasheet

http://www.xilinx.com/support/documentation/ip_documentation/a
xi_vdma/v6_2/pg020_axi_vdma.pdf

[3] Digilent Zybo Base System Design
http://www.digilentinc.com/Data/Products/ZYBO/zybo_base_syste

m.zip

[4] Digilent Vivado Library https://github.com/DigilentInc/vivado-
library/tree/master/ip

[5] OpenGL Projection Matrix
http://www.songho.ca/opengl/gl_projectionmatrix.html

[6] OpenGL Transformation

http://www.songho.ca/opengl/gl_transform.html

[7] AXI Testbenches https://github.com/Architech-Silica/Designing-a-

Custom-AXI-Master-using-
BFMs/tree/master/HDL_sources/Testbench_Sources

https://drive.google.com/open?id=0B4z_15QSfhUSOWNWWjhEZ24xTEE
https://drive.google.com/open?id=0B4z_15QSfhUSOWNWWjhEZ24xTEE
http://www.xilinx.com/support/documentation/ip_documentation/axi_vdma/v6_2/pg020_axi_vdma.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_vdma/v6_2/pg020_axi_vdma.pdf
http://www.digilentinc.com/Data/Products/ZYBO/zybo_base_system.zip
http://www.digilentinc.com/Data/Products/ZYBO/zybo_base_system.zip
https://github.com/DigilentInc/vivado-library/tree/master/ip
https://github.com/DigilentInc/vivado-library/tree/master/ip
http://www.songho.ca/opengl/gl_projectionmatrix.html
http://www.songho.ca/opengl/gl_transform.html
https://github.com/Architech-Silica/Designing-a-Custom-AXI-Master-using-BFMs/tree/master/HDL_sources/Testbench_Sources
https://github.com/Architech-Silica/Designing-a-Custom-AXI-Master-using-BFMs/tree/master/HDL_sources/Testbench_Sources
https://github.com/Architech-Silica/Designing-a-Custom-AXI-Master-using-BFMs/tree/master/HDL_sources/Testbench_Sources

