
Image Filtering in VHDL

By: Austin Copeman

Azam Tayyebi

Overview

 Filters and Implementation

 Filter Overview

 Gaussian

 Grayscale

 Software

 Results

 Gaussian

 Grayscale

 Questions

Filter Overview

uP

Grayscale Gaussian

AXI Interconnect

Gaussian Filter Statement
 read image data (100x100x8 bits) from PS part of zynq and save it into

memory.

 Perform the convolution of the image with a 3x3 kernel.

 Return the result to the convolution into PS part and also display with VGA.

Gaussian

PS

Dual Port Bram Convolution_block Dual Port Bram VGA

Image is sent by AXI peripheral and stored in the BRAM.

100*102*8 bit = 10200bytes

In each step a portion of the image in the BRAM is sent to the convolution block.

The filtered result is saved in BRAM 100*100*16bit=20000 byte and read by PS

part.

The previous process is repeated for the whole image.

Gaussian - Operation

a
b
c

Multipliers& adders

…
…

K1K0 K8
a0 b0 c0

Output BRAM

32 from AXI

32 from AXI

32 from AXI

Gaussian - Operation

a

b
c

32 from AXI

32 from AXI

32 from AXI

Multipliers& adders

…
…

K1K0 K8
a0 b0 c0

Output BRAM

Gaussian - Operation

a

b
c

32 from AXI

32 from AXI

32 from AXI

Multipliers& adders

…
…

K1K0 K8
a0 b0 c0

Output BRAM

Read_state

Addre

<2550

yesNo

Read_3row

Convolution

Addre

<2550

count done

Grayscale - Intro
 What is Grayscale?

 A range of gray shades from white to black

 How is color represented?

 Each color(Red, Green, Blue) is represented on a gray scale

 The gray scale range: [0,255]

 Where 0 is black and 255 is white

 Conversion from RGB to Grayscale

 “Percentage” Method

 Grayscale = R * R% + G * G% + B * B%; where R% + G% + B% = 100%

 Example

 Luminosity Grayscale = R * 0.2126 + G * 0.7152 + B * 0.0722

Original Image Grayscale

Grayscale - Intro
 Why grayscale?

 Signal to noise

 Many applications don’t require color

 These cases color is considered a “noise”

 Simplifies code

 Simplifies finding an image’s edge

 Less complex

 Color is complex

 Color has 3 channels

 Grayscale has 1 channel

 Speed

 Color requires 3 channels to process

Grayscale - Implementation
 Input

 8bit RGB pixel

 b7b6b5b4b3b2b1b0

 RGB Percent

 Rp+Gp+Bp=100%

 Start

 Output

 8bit RGB Pixel

 b7b6b5b4b3b2b1b0

 Done

Grayscale

RGBin Rp Gp Bp start

resetn

clock

RGBout done

P P P P

P

*Note: P=8

Grayscale – AXI Top

Grayscale AXI

RGBin Rp Gp Bp start

resetn

clock

RGBout done

slv_reg0 slv_reg2

slv_reg1

P

P P P P

S_AXI_RESETN

S_AXI_ACLK

*Note: P=8

S
lv

_
re

g
0
(2

3
:1

6
)

S
lv

_
re

g
0
(1

5
:8

)

S
lv

_
re

g
0
(3

1
:2

4
)

S
lv

_
re

g
0
(7

:0
)

S
lv

_
re

g
2
(0

)

S
lv

_
re

g
1
(3

1
:2

4
)

S
lv

_
re

g
1
(2

3
)

Grayscale
resetn

clock

RGB done

Grayscale – Top

P

P P P

S_AXI_RESETN

S_AXI_ACLK

P P P

RGBin

R
G

B
in

(7
:5

) &
 “

0
0
0
0
0
”

R
G

B
in

(4
:2

) &
 “

0
0
0
0
0
”

R
G

B
in

(1
:0

) &
 “

0
0
0
0
0
”

BpGpRp start

RGBout done*Note: P=8

Decoding 8bit RGB
Red = (RGBin >> 5) * 32

Green = ((RGB & 0x1C) >> 2) *32

Blue = (RGBin & 0x03) * 64

R G B Rp Gp Bp start

Grayscale – DP
RGBColorMux RGBPercentMux

R G B Rp Gp Bp

S

*Note: P=8

P P P P P P

X

P PRGBc RGBp

Adder

addreg

Divider

2*P

2*P

2*P

2*P RGBaddreg

RGBadd

RGBmuls

divQ

P

RGB

divQ(P-1:0)

grayclr

1
E

sclr

E

done
DB

resetn divdone

Ed100

resetn

Y X

DA

FSM

Ed grayclrdone

start divdone

Grayscale – FSM
*Note: Unless otherwise

noted, all values are

initially set to 0

C=0, grayclr=1

S1

resetn = ‘1’

start=1?

S2

C=3?

C=C+1

C=0, Ed=1

S3

grayclr=1

divdone=1?
No

Yes

No

No

Yes

Yes

Software

 Written in C

 Image hard coded into header file

 Converted output shown on terminal

 Image

 Converted to text file using MATLAB script

 Converted back to image file using MATLAB script

Results - Gaussian

Grayscale Filter Output

R=30%, G=59%, B=11%

Gaussian Filter 8bit Output

Gaussian Filter 16bit Output

Results - Grayscale

Original Image
Expected: Octave Output

R=29.89%, G=58.70%, B=11.40%
Result: Grayscale Filter Output

R=30%, G=59%, B=11%

Questions?

