By: Austin Copeman

Azam Tayyebi

Image Filtering in VHDL

Overview

- Filters and Implementation
 - ► Filter Overview
 - ► Gaussian
 - Grayscale
- Software
- Results
 - ► Gaussian
 - ► Grayscale
- Questions

Filter Overview

Gaussian Filter Statement

- read image data (100x100x8 bits) from PS part of zynq and save it into memory.
- Perform the convolution of the image with a 3x3 kernel.
- Return the result to the convolution into PS part and also display with VGA.

Gaussian - Operation

Gaussian - Operation

Gaussian - Operation

Grayscale - Intro

- What is Grayscale?
 - A range of gray shades from white to black
- ► How is color represented?
 - Each color(Red, Green, Blue) is represented on a gray scale
 - ▶ The gray scale range: [0,255]
 - Where 0 is black and 255 is white
- Conversion from RGB to Grayscale
 - "Percentage" Method
 - ► Grayscale = R * R% + G * G% + B * B%; where R% + G% + B% = 100%
 - ► Example
 - Luminosity Grayscale = R * 0.2126 + G * 0.7152 + B * 0.0722

Grayscale

Grayscale - Intro

- Why grayscale?
 - Signal to noise
 - Many applications don't require color
 - These cases color is considered a "noise"
 - Simplifies code
 - Simplifies finding an image's edge
 - Less complex
 - Color is complex
 - Color has 3 channels
 - ► Grayscale has 1 channel
 - Speed
 - Color requires 3 channels to process

Grayscale - Implementation

- Input
 - 8bit RGB pixel
 - $b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$
 - RGB Percent
 - ► $R_p + G_p + B_p = 100\%$
 - Start
- Output
 - 8bit RGB Pixel
 - $\blacktriangleright b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$
 - Done

*Note: P=8

Grayscale - Top

Software

- ► Written in C
 - Image hard coded into header file
 - Converted output shown on terminal

Image

- Converted to text file using MATLAB script
- Converted back to image file using MATLAB script

Results - Gaussian

Grayscale Filter Output R=30%, G=59%, B=11%

Gaussian Filter 8bit Output

Gaussian Filter 16bit Output

Results - Grayscale

Original Image

Expected: Octave Output R=29.89%, G=58.70%, B=11.40%

Result: Grayscale Filter Output R=30%, G=59%, B=11%

Questions?