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Filter Overview

uP

Grayscale Gaussian

AXI Interconnect



Gaussian Filter Statement
 read image data (100x100x8 bits) from PS part of zynq and save it into 

memory.

 Perform the convolution of the image with a 3x3 kernel.

 Return the result to the convolution into PS part and also display with VGA.



Gaussian

PS

Dual Port Bram Convolution_block Dual Port Bram VGA

Image is sent by AXI peripheral and stored in the BRAM. 

100*102*8 bit  = 10200bytes 

In each step a portion of the image in the BRAM is sent to the convolution block.

The filtered result is saved in BRAM 100*100*16bit=20000 byte and read by PS 

part.

The previous process is repeated for the whole image.



Gaussian - Operation
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Grayscale - Intro
 What is Grayscale?

 A range of gray shades from white to black

 How is color represented?

 Each color(Red, Green, Blue) is represented on a gray scale

 The gray scale range: [0,255]

 Where 0 is black and 255 is white

 Conversion from RGB to Grayscale

 “Percentage” Method 

 Grayscale = R * R% + G * G% + B * B%; where R% + G% + B% = 100%  

 Example

 Luminosity Grayscale = R * 0.2126 + G * 0.7152 + B * 0.0722

Original Image Grayscale



Grayscale - Intro
 Why grayscale?

 Signal to noise

 Many applications don’t require color

 These cases color is considered a “noise”

 Simplifies code

 Simplifies finding an image’s edge

 Less complex

 Color is complex

 Color has 3 channels

 Grayscale has 1 channel

 Speed

 Color requires 3 channels to process



Grayscale - Implementation
 Input

 8bit RGB pixel

 b7b6b5b4b3b2b1b0

 RGB Percent

 Rp+Gp+Bp=100%

 Start

 Output

 8bit RGB Pixel

 b7b6b5b4b3b2b1b0

 Done

Grayscale

RGBin Rp Gp Bp start

resetn

clock

RGBout done

P P P P

P

*Note: P=8



Grayscale – AXI Top

Grayscale AXI

RGBin Rp Gp Bp start

resetn

clock

RGBout done
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Grayscale
resetn

clock

RGB                 done

Grayscale – Top
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RGBout done*Note: P=8

Decoding 8bit RGB
Red = (RGBin >> 5) * 32 

Green = ((RGB & 0x1C) >> 2) *32

Blue = (RGBin & 0x03) * 64

R          G          B          Rp Gp Bp start



Grayscale – DP
RGBColorMux RGBPercentMux

R G B Rp Gp Bp

S

*Note: P=8
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Grayscale – FSM
*Note: Unless otherwise 

noted, all values are 

initially set to 0

C=0, grayclr=1

S1

resetn = ‘1’

start=1?

S2

C=3?

C=C+1

C=0, Ed=1

S3

grayclr=1

divdone=1?
No

Yes

No

No

Yes

Yes



Software

 Written in C

 Image hard coded into header file

 Converted output shown on terminal

 Image

 Converted to text file using MATLAB script

 Converted back to image file using MATLAB script



Results - Gaussian

Grayscale Filter Output

R=30%, G=59%, B=11%

Gaussian Filter 8bit Output

Gaussian Filter 16bit Output



Results - Grayscale

Original Image
Expected: Octave Output

R=29.89%, G=58.70%, B=11.40%
Result: Grayscale Filter Output

R=30%, G=59%, B=11%



Questions?


