
Image Filtering in VHDL

Utilizing the Zybo-7000

Austin Copeman, Azam Tayyebi

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: akcopema@oakland.edu, atayyebi@oakland.edu

Abstract—This project involves the use of a FPGA and

microprocessor to successfully implement image filters on the

FPGA and control them using the microprocessor. Utilizing the

Zybo-7000 developmental board, we were successfully able to

create two simple filters, Gaussian and Grayscale.

I. INTRODUCTION

The use of image filtering is an important and broad area
of study. By filtering images, we are able to; sharpen edges,
remove noise, line detection and many more applications.
These considerations are important when considering which
filter to use.

On modern day computers most image filtering is done by
the microprocessor using complex algorithms. These
algorithms, depending on their complexity, require a powerful
processor that is capable of performing all of these
calculations. Even if you have a powerful enough processor to
perform these calculations, the algorithms take time to
complete due to the physical limitations of the
microprocessor. A microprocessor, being remarkably fast, is
only able to compute one task at a time. This is where the use
of dedicated hardware comes into play, in our case, a FPGA.

By using dedicated hardware, we are able to lift the burden
of these heavy calculations off of the processor and perform
what would be daunting and time consuming formulas onto
the FPGA. The FPGA, being a reprogrammable piece of
hardware, is able to perform complex calculations in a timely
manner compared to that of a microprocessor due to its ability
to perform multiple tasks and calculations at a single time.

In our report we will go over the Gaussian filter and
Grayscale filter along with their implementation. These two
filters are part of the most basic filters but they are also some
of the most important and fundamental filters.

II. METHODOLOGY

Our project was designed and implemented utilizing the
Xilinx Vivado IDE and Xilinx SDK. The filters and control
path were all created on the Xilinx Vivado IDE using VHDL
as the programming language. The microprocessor was
programmed using Xilinx SDK and was programmed in C.

Modern day computers use upwards of 64bits of color for
images. For simplicity, we will be using only 8bit color for
our images. In hardware, images are composed of pixels. An
image size depends on the amount of pixels it is composed of
Each pixel is composed of three main colors; red, green blue
(RGB).

With 8bit color we are able to distinguish 256 shades of
color. We are able to control the shades of color by varying
the intensity of RGB. To achieve the 8bit color we define the
following for the color scale; 3bits for red (b7 to b5) and green
(b4 to b2) and 2 bits for blue (b1 to b0). Blue is a more dominate
color and is part of the reason for it receiving less bits
compared to red and green.

To convert the images, we used a MATLAB script that
would take an image and convert it to an 8bit hex text file.
This file was then copied and pasted into an array in our C
code.

A. Gaussian Filter

In this project a filter is designed to smoothen the given
grayscale image based on Gaussian blur technique figure I-I.
Blurring of an image is a technique of taking a pixel as the
average value of its surrounding pixels to reduce image noise
and sharpness at the edges. Noise reduction is one of the major
concerns in the image processing. The main goal of noise
reduction is to remove information that may corrupt the
image. This can be achieved by many different techniques,
such as Median/Mean filtering, Gaussian filtering, applying
Fourier transformation and many more.

Edges in an image are the outline that details the structure
of an object in the image. Blurring is in fact a technique which
is used to reduce the edges and making the transition from one
color to the next color in a smooth manner. To achieve this
goal in this project, a filter kernel is used. The filter kernel
coefficients change the pixel’s values of the image, which is
to be smoothened but still preserves the valuable features of
the image. Mathematically, applying a Gaussian blur to an
image is the same as convolving the image with a Gaussian
function.

 Figure I-1: desired blur image

mailto:akcopema@oakland.edu
mailto:atayyebi@oakland.edu
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Gaussian_function

To approximate the Gaussian filter. One 3*3 kernel mask is
used, shown on Figure I-II. The integrals are not integers; we
rescaled the array so that they are integers. This matter put us
in trouble because we didn’t know how to display properly in
Matlab; the output was just black.

 Figure I-2I: 3*3 Kernel(е=1)

 By changing the coefficients, we are able to blur input image
at different degrees.
 Once a suitable kernel has been calculated, then the Gaussian
smoothing can be performed using standard convolution
method which is multiply 9 pixels of image in the given kernel
and then add them together. The method that is used to iterate
the image shown in Figure I-III.A zero-padding is used for the
first row and last row of the image.

Figure I-III: Iteration over the image.

1) Implementation

The Gaussian filter was designed in VHDL first,as shown

in Figure I-IV. We used the following input signals;

Imaginput, addr_input, addrb. Where Imaginput is 32 bit in

length that contains 4 of 8bits of input gray image and

addr_input that is the address of input dual port RAM is 12

bits and also addrb which is read address of output dual port

RAM is 14 bits. The outputs consisted of the following

signals; image_out and done. Where image_out is 16bits in

length and done is a 16bits length.

Figure I-IV: block diagram of design

a) Hardware Implementation

 To design the filter, different steps are considered.

In the first step, 32 bits data input is read and save in a Dual

port RAM which its address is sending by processor at the

same time with input pixels.

In the second step, three rows of the image, which is stored

in a BRAM in the first step, are read and save in registers

a,b,c.

 In the last step, convolution are performed on the pixels.

Then output pixels are saved in the output dual port RAM. In

this step, convolution is performed on one row of the input

image then we should go back to step 2 and read another row

and also swap row b and c with a and b. we should switch

between step 2 and 3 until complete convolution for the

whole rows.

 Convolution as mentioned before is multiply 9 pixels of

image and kernel and then add them together. The multiplier

is just * and adder is + in hardware design. The result of

convolution is a pixel in 16 bit length.

 Two Bram are used in this design for input image and

convolution results. The input one saves 32 bit * 2550=10200

byte which is the image pixels with two extra zero row for

zero-padding of the first line and the last line. The output

BRAM saves 16*10000 =20000 byte which is convolution

results.

 The steps are implemented in hardware with a finite state

machine in four steps (S1,S2,S3,done).

1 2 1

2 4 2

1 2 1

B. Grayscale Filter

A grayscale filter is a filter in which each value of each
pixel is a single sample. This means that each pixel only
carries intensity information. The grayscale filter gets its name
from the colors it represents. The grayscale is composed
exclusively of shades of gray that vary from black to white.
Where black is the weakest in intensity and white is the
strongest in intensity.

Figure II-3: Converted Image to Grayscale

Grayscale is used for when color is not a necessity. Using

a gray color range allows for better and faster image
processing compared to its color component. Grayscale
filtering is also one of the first steps finding an image’s edge
due to how it simplifies the image.

There are many different ways on how to achieve
grayscale. The first way is called the averaging method, aka
“quick and dirty method”. This method uses the formula,

𝐺𝑟𝑎𝑦 =
(𝑟𝑒𝑑+𝑔𝑟𝑒𝑒𝑛+𝑏𝑙𝑢𝑒)

3
 . Even though this method is easy to

implement and generates a nice grayscale equivalent, it does
a poor job of representing shades of gray relative to the way
we as humans perceive brightness. The way that our grayscale
filter was created allows for the changing of brightness and
you are able to control the brightness for each color. This
method is what we call the percentage method. The
percentage method uses the formula,

𝐺𝑟𝑎𝑦 = 𝑅 ∗ 𝑅% + 𝐺 ∗ 𝐺% + 𝐵 ∗ 𝐵%;
𝑤ℎ𝑒𝑟𝑒 𝑅% + 𝐵% + 𝐺% = 100%

By controlling the percentages, we are able to represent a
better way that we as humans perceive brightness. One of the
other reasons of doing this is because not all humans see color
the same. Depending multiple factors main ones being race
and gender, the weight of each color will vary. This is one of
the main reasons why the average method is an inaccurate
method.
 Instead, one of the common formulas that is used
through all image processors is called luminosity or Luma for
short.

𝐿𝑢𝑚𝑎 = 𝑅 ∗ 0.2126 + 𝐺 ∗ 0.7152 + 𝐵 ∗ 0.0722
This formula results in a more dynamic grayscale image. Even
though this formula is an ITU-R recommendation BT.709,
sometimes also called ITU656, there are other
recommendations that go by different coefficients. Due to this
fact, the grayscale filter was designed by us allows for integer
numbers, 0-100, to be used as inputs to allow for a wide
arrange of grayscale conversions.

1) Implementation

The filter was first designed in VHDL and used the

iterative method. The design used can be seen in Figure B-1.

We used the following input signals; RGBin, R%, G%, B%,

start. Where RGBin, R%, G%, B% are 8bits in length and

start is a single bit. The outputs consisted of the following

signals; RGBout and done. Where RGBout is 8bits in length

and done is a single bit. With the inputs and outputs already

decided we were able to then design how the filter would

work.

Figure II-4: Grayscale Hardware Overview

a) Hardware Data Path

The filter, seeming complex, actually utilizes simple

components. The design can be seen in Figure B-2. The

first step in the filtering process is to separate the red,

green and blue bits from each other and create their own

signals. To do this, in software it would take multiple

clock cycles but in FPGA it takes no time.

From the signal RGBin, three separate signals were

created; R, G and B. Where the three colors were

separated according to their bit length and set to the most

significant bit(MSB) and concatenated with 0’s at the

LSB until the length of 8bits was achieved for each signal.

Figure II-5: Grayscale Hardware RGB Decoder

The circuit for the following can be seen in Figure B-

3 below. From the splitting of the colors, we had two

different multiplexors to receive the 8bit color signals

(RGBColorMux) and the RGB percentages

(RGBPercentMux). A 2bit select line was used to control

which color was selected. When a color was selected

based on the state machine, which will be described later

in the paper. From the multiplexors, it was sent to a serial

multiplier circuit.

The multiplier circuit was provided to us on Prof

Daniel Llamocca website [1]. This multiplier circuit takes

two numbers in size N in length and outputs a number that

is 2*N in length. In our case the two numbers are the color

percentage and the color. The signal then travels to the

adder circuit.

The adder circuit consists of two components, the

adder and an adder register (addreg) both have an input

and output of size 2*N. The adder is iterative since it only

takes in one number at a time and is also controlled by the

state machine. Since we have three colors the adder

circuit must add all three colors together that were

multiplied by the multiplier circuit. In the first iteration

the color red would go through and would be added by a

constant 0 for the first iteration only. From here it would

be loaded into the adder register to be added with the next

color. After doing this until the blue color was added in it

would be then sent to the divider circuit.

The divider circuit is the most complex component of

the circuit. This component was also provided to us by

Prof Daniel Llamocca [1]. There were multiple versions

of the divider. The version used in this project is the

iterative divider. The divider circuit contains multiple

signals that are being used to drive it. The main signals

are E and done. These signals allow us to start the divider

and know when the divider is done. The next two signals

that are used are the dividend and divisor. The circuit

takes the output from the adder register (the dividend) and

divides it by a constant 100 (divisor). The reason for

doing this is because during our multiplication circuit we

took a number that ranged [0,100] and multiplied by

another number that ranged [0,255]. This gave us a range

of numbers of [0,25500]. This meant that our output

would be 2*N bits long. This is not what we want, what

we want is a number that is in the range of [0,255]. By

diving by a constant 100 we were able to achieve this

range but with how the divider circuit is made we had to

output a bit length of 2*N. Since the division had left the

range of our numbers under 256, we knew that the top N

bits of our 2*N bit number were all 0 we could just take

the lower N bits and that would be our RGB grayscale

output.

Figure II-6: Grayscale Data Path

b) Hardware Finite State Machine

The state machine for the grayscale filter consists of

three states (S1, S2 and S3). The state machine starts only

when resetn is ‘1’. When resetn is ‘1’, we start in S1. In

S1 we set our counter variable C to 0 and our grayclr

signal to ‘1’. The variable C controls how many iterations

we go through for our adder circuit and grayclr controls

the clearing of the registers. We stay in S1 until a ‘1’ is

received on the start signal. In S2 we increase our counter

variable C until C = 3. When C = 3, we set C back to 0

and enable our divider circuit by sending a ‘1’ to the

signal Ed. In S3, we send a ‘1’ to grayclr to clear our

registers and wait until our divider is done. When the

divider is done it sends a ‘1’ back to our state machine on

divdone signal. When a ‘1’ is received we move back to

S1 and wait for another start signal.

Figure II-7: Grayscale Finite State Machine

C. Processor

1) Gaussian Filter

 Three different files were created; main.c, Gaussian.c and

image.h. In the file, Gaussian.c, we included our Gaussian

filter header so we were able to read and write to our filter

using the AXI lite bus that was created. A function called

Gaussian Filter(), was also created in this file. This function

took two different parameters; photo height, photo length.

The photo height and photo length were used to control the

increasing of address input which is the address of input

BRAM and also determine how many pixels we want to send

by AXI. This file takes outputs by AXI and prints it to the

terminal window.

2) Grayscale Filter

Three different files were created; main.c,

Grayscale.c and image.h. In the file, Grayscale.c, we

included our grayscale filter header so we were able to

read and write to our filter using the AXI lite bus that was

created. A function called grayscaleFilter(), was also

created in this file. This function took five different

parameters; photo height, photo length, red percent, green

percent and blue percent. The photo height and photo

length were used to control the look of the output. Also

they determined the size of the array that was being

called. The red, green and blue percentage parameters all

referred to how much intensity you wanted to give to each

of the three colors. This file being basic, printed

everything to the terminal window.

 The image.h file, contained the image that was to be

converted. It also allowed so that more filter could be

implemented in the future and could use the same image.

 The main.c file contained our main function. This

files only function was to call the filter functions and give

the defined parameters.

III. EXPERIMENTAL SETUP

The project was written using Xilinx Vivado IDE and
Xilinx SDK tools. The hardware portion of the project was
written in Xilinx Vivado IDE. Testing was done for each of
the filters using test benches. After verifying that the filters
were working, each filter was package in its own IP. Using
Vivado’s block diagram software, all of the inter connections
were made. The system was then placed into its own HDL
wrapper and a bit file was created. Once the bit file was
created the program was exported to Xilinx SDK for the
programming of the microprocessor.

 In Xilinx SDK separate c files were created for each
filter. A single header file was created that also contained the
image to be filtered. For the grayscale filter, the filtered image
was outputted to a terminal window. This output was then
copied and pasted into a text file. The text file was then ran
and converted back into an image file by using an MATLAB
script.

IV. RESULTS

A. Gaussian Filter

 We test the output of Gaussian Blur with the Matlab

output for Gaussian blur that was unfortunately different. But

we test input of hardware with the samples inputs that is

corrected. The output of designed filter plotted by Matlab is

shown in Figure IV-I.

Figure IV-1: input and output of the filter

When I started implementing of Gaussian filter I thought it is

simple because the concept seems simple. I didn’t have

enough knowledge about image processing and spend a lot of

time to display the output with VGA but I couldn’t display

properly because I was in a wrong way. When I talked with

Dr.Llamocca and found what I should do, it was late. And

also my image output at this moment isn’t a blur version of

input.

B. Grayscale Filter

After converting each converted image back into

viewable image. We found that the filter did what it was

supposed to. The images were converted using Octave, a free

alternative compared to MATLAB. Using the function

rgb2gray(), we were able to convert an image to grayscale

using their standards and compare it to our filter. The

rgb2gray filter uses the following formula:

𝑟𝑔𝑏2𝑔𝑟𝑎𝑦 = 0.2989 ∗ 𝑅 + 0.5870 ∗ 𝐺 + 0.1140 ∗ 𝐵

Since our filter can only accept integer numbers we had

to round our values to the nearest one’s place. Even with

this rounding our custom made filter still looked remarkably

close to the one that was generated by Octave

Figure IV-2I: Comparing Images

The differences in the images is due to how compression

of saving them took place. The images were saved into a

JPEG format. This compressed the images and caused slight

change in some of the coloring. Before compression, if you

looked at each image the pixels would match up almost pixel

to pixel.

What I found while developing the grayscale filter was

even though the concept may have seemed easy at first,

implementing it was the hard part. Designing a system that

works with both the FPGA and microprocessor seems like an

easy task to do but when you start to design how you are

going to implement it you realize there are many variables

you have to take into account. At first, I tried to design my

filter so a start signal would not have to be sent to the filter.

A FSM would take care of it and when it saw something on

the slave registers it would start. With how I had my filter

designed this lead to a lot of headache on trying to figure out

why my filter was not working.

CONCLUSIONS

What we found was that filters, even though they may
seem to be simple in code. They are actually complex when
designed in hardware. We found that our hardware filters
matched up to that of a computer algorithm filter. There are
some slight differences due to rounding of the numbers and
that a computer can do a lot more complex math then what our
filters are capable doing at the moment.

One feature that was added but never able to implement
was the ability to send and receive text files to the Zybo from
a laptop using UARTlite. This would have made our filter
more generic, instead of having an image that was hardcoded
into our code. We would have been able to send over any
image that we wanted to. Receiving the image back would
make the processing easier as well. We could have converted
the image, sent the image, filtered the image, received the

image and converted the image back in one step compared to
the multiple steps we had to do now. This function could had
been all done through a MATLAB script, with MATLAB’s
ability to use the COM port.

One other feature that we wanted to implement was the
ability for the user to choose which filter they wanted and then
input the parameters they wanted for the filter. This was to be
done over the terminal or with the use of a GUI that would
have been written in Java. This was not implanted due to not
being able to get the UART completed.

Overall, we believe that we had a great result for our
filters. Even though we were not able to complete everything
we wanted to do for this project. We were able to successfully
filter an image through the use of the Zybo-7000.

REFERENCES

[1] Llmocca, Daniel. Reconfigurable Computing Research Laboratory.
Ed. Daniel Llmocca. N.p., n.d. Web. 2 Dec. 2015.
<http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html>.

[2] Helland, Tanner. Seven Grayscale Conversions. Ed. Tanner Helland.
N.p., 1 Oct. 2011. Web. 3 Dec. 2015.
<http://www.tannerhelland.com/3643/grayscale-image-algorithm-
vb6/>.

