
Floating Point Addition and Subtraction

List of Authors (Saher Al-Khrayyef, Raymon Benjamin, Nathan Sketch)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

smalkhra@oakland.edu, rbenjam2@oakland.edu, nksketch@oakland.edu

Abstract— Addition, Subtraction, and Multiplication

floating point numbers are a critical requirement for

Digital Signal Processing (DSP) applications involving

large dynamic range. This paper focuses on a generic

precision floating point normalized addition,

subtraction, and multiplication targeted for ZYBO

Zynq-7000 FPGA based on VHDL. It handles the

overflow and underflow cases. Truncation is

implemented to give more precision.

I. INTRODUCTION

Floating point numbers are one possible way of
representing real numbers in binary format, the IEEE 754[1]
standard presents two different floating point formats, Binary
interchange format and Decimal interchange format.

We used the ZYBO Zynq-7000 FPGA board to
implement our project. We created a custom IP and
connected it to the AXI4Lite interface to communicate to the
ARM processor. The computing language that we used to
write the program is VHDL, which works well to program
the FPGA board that we used. Another computing language
that we used is C. Our project focused on addition,
subtraction, or multiplies two floating point numbers. We
used a generic precision floating point normalized addition
subtraction, and multiplication and implement it on the
Zyng-7000 FPGA board.

This project will improve our teamwork, our skills in

VHDL and C programing language. Also, it will help us to
get more experience working with FPGA boards. The class
lecture was really helpful to our project because it covered
important topics that we needed to understand for addition
and subtraction method. The thing that we did a lot of
research about it to implement and understand was the
leading zero detector.

II. METHODOLOGY

In this section, we will provide a background on the

operation of our floating point addition and subtraction

project.

A. Floating Point Addition and Subtraction Algorithem

The precision of the floating point number was used as

shown in the figure (1).

Figure 1: Single and Double Precision Floating Point

Single and double precision floating point represent the

format of the floating point number. Where s is the sign bit,

and exp is the exponent, which depends on the binary

number size. Mantissa, also it depends on the binary number

size. Bias for single is 127 and for double is 1023.

We used IEEE-754 STANDARD to calculate the floating

point number. This represents as follow:

 𝑋 = ±1. 𝑓 × 2𝑒

Figure 2: IEEE-754 Standard Representation

Significand: 𝑓 is the mantissa. We should add 1 to the

beginning of the mantissa before start addition/subtraction.

 Significand range should be [1, 2 − 2−𝑝] = [1, 2). Biased

exponent E is the number of the bits. Bias = 127 or 1023.

e= exp – bias.

B. Design Floating Point Addition and Subtraction

Floating point addition and subtraction can be done by

inputting e1 and e2, and then we compare them together. If

e1 greater than or equal e2, we swapped the mantissas to be
like this fx=f2 and fy=f1. Moreover, e1 subtracted e2 and the
output would shift the sx number to the right to normalize sx.
Also, the selector would be a zero that would make ep=e1,
and e1 subtracted i that obtained from the LZD to get the
final e. On the other hand, if e1 less than e2, there was no
swapping for the mantissas. The selector was a one that
would make ep=e2, and e2 subtracted i to get the final e.
Then we added the sign number for s1 and s2, and we found
the 2’C for them before we added them or subtracted them.
Once we did that, we could do the addition or subtraction
operation on the numbers to get the final f. The MSB is the
sign number. The following figure is the flow chart diagram
for addition and subtraction.

Figure 3: Flow Chart Floating Point Addition and Subtraction

 Normalized Left Shift the normalized left shift in the
post-normalization step removed leading zeros in order to
follow floating point format. This did not work when the
result of the adder-subtractor was all 0’s. This case was
handled by the special cases matrix.

 Below is the full circuit for the addition and subtraction of
floating point.

Figure 4: Floating Point Addition and Subtraction Circuit

C. Floating Piont Multiplication Algorithem

 In order to find the floating point multiplication, we

needed to add the two exponents from each number

together, and then subtract their sum from the bias. Bias

could be 127 or 1023. Also, we could obtain the sign bit by

xor-ing the MSB from each number, and then we

normalized the result. We used truncation for the final result

to get the right format for the final result.

 D. Design Floating Point Multiplication

 To multiply the two numbers, we checked if the number

one or number two was zero. If one of them was a zero, so

the result should be zero. If none of them was zero, so we

added the exponents together. And then we subtracted them

from the bias. After that, we multiplied the significands.

And then we normalized the result to get the final product in

the right format. The figure 5 below shows the flow chart of

the floating point multiplication.

Figure 5: Flow Chart of Floating Point Multiplication

 Sign Bit Calculation was calculated by multiplying two

number’s result is a negative sign if one of the multiplied

numbers is of a negative value. By the aid of a truth table we

find that this can be obtained by XOR-ing the sign of two

inputs. The figure 6 shows the XOR gate and the truth table.

Figure 6: Sign Bit Calculator XOR Gate

E. Floating Point Top Circuit

After we created the files for addition, subtraction, and

multiplication, we tested them individually to see if we got

the right result or not. After we got the right result, we

combined all of them in one file to have them working in

one circuit, and then we tested the final circuit.

The figure7 below shows the top floating point circuit.

Figure 7: Top Floating Point Circuit

F. Custom IP

We created a custom IP using the Vivado Create and

Package IP tool. In order to connect with the system on chip
(SoC) an IP needs to be created. The interface used to create
the IP was the AXI4Lite. A total of seven slave registers
were used. Five registers were dedicated to the inputs and
two were dedicated for the outputs. Below is a figure
AXI4Lite Slave Register Interface. A block design was created
to connect the IP to the ZYNQ arm processor. Below is a
figure of the IP block diagram.

Figure 8: AXI4Lite Slave Register Interface

Figure 9: IP Block Diagram

III. EXPERIMENTAL SETUP

To verify our project we simulated different test cases in

Vivado 2015.2. We picked different test cases that will give
us an overview to view if the circuit is working. The tests
included all of addition, subtraction, and multiplication. One
test is zero added/subtracted to zero or another number. A
second is a very large exponent added/subtracted to a very
small exponent. Another test is an addition and subtraction
that will result in a very large mantissa shift, for example a
52 bit shift for a double floating point arithmetic. We
simulated the multiplication circuit in a similar fashion. We
tested the top circuit and IP. The hardware tools used were
Vivado 2015.2. The software tools used were Xilinx SDK.

IV. RESULTS

The results were as expected for the addition, subtraction,

multiplication, and top circuits. The results are displayed in

the figures below.

Figure 10: Addition Test bench

Figure 11: Subtraction Test bench

Figure 12: Multiplication Test Bench

After we simulated the top circuit we got the right result.

The following simulation shows the top floating point

circuit simulation.

Figure 13: Top Floating Point Arithmetic Circuit Simulation

CONCLUSIONS

We have learned a lot from this project and are thankful
we decided to do this project. We have learned about the
process and flow chart to the addition, subtraction, and
multiplication floating point circuit. We learned about the
leading zero detector and the barrel shifter. We learned about
the AXI interface. Also, how to create and connect custom
built IPs to an ARM processor. Improvements that can be
made are to create a functional divider circuit. Also, to test
more cases, by generating a list of test cases and using
Vivado to run the simulation. Another possibility is to use
Berkeley TestFloat to test the circuits.

REFERENCES

[1] IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic, 2008.

[2] Llamocca, Daniel. "Reconfigurable Computing Research
Laboratory." Web. 13 Dec. 2015.
<http://www.secs.oakland.edu/~llamocca/Fall2015_ece495.html>.

