FINAL PROJECT

DFX Expanded Hyperbolic Cordic Implementations

Iyad Mansour Omar Bataineh

OUTLINE:

- Objectives
- Status Summary
- ✤ Project Timeline
- Extended Hyperbolic Cordic in Math
- DFX VHDL Design
- Error Analysis
- IP Package and Peripherals
- Attention Areas

Objectives

- The original hyperbolic CORDIC (Coordinate Rotation Digital Computer) algorithm imposes a limitation to the input's domain which renders the algorithm useless for certain applications (limited convergence).
- A fixed-point implementation of the hyperbolic CORDIC algorithm with the expansion scheme proposed by Hu is presented, Using the *Iterative* Architecture, which is upgraded to a DFX Version.
- We used DFX because it combines the simplicity of a fixed-point system with the wider dynamic range offered by a floating point system. Using a single bit exponent which selects two different fixedpoint representations, it allows dynamic scaling of signals throughout the system.

Status Summary

• The project is done on time as scheduled.

Project Timeline

Project # 1 - Phase A			2015								2016									
Activity	Notes	Status	9/5	10/28	11/4	11/11	11/18	11/25	11/30	12/9	12/5	12/10	12/30	1/6	1/13	1/20	1/27	2/3	2/10	2/17
Start																				
Project Selection		Done																		
MATLAB implementations for FX		Done																		
MATLAB implementations for Expanded FX		Done																		
Implementation	-																			
VHDL implementations for FX		Done																		
VHDL implementations for Expanded FX		Done																		
DFX Design																				
Design DFX Barrel Shifter		Done							₽											
Design DFX Add/Sub		Done																		
Parametrization		Done																		
Run full range test case		Done									Final									
Write final report		Done										7	r							

Extended Hyperbolic Cordic in Math

The method proposed by Hu consists in the inclusion of additional iterations for negative indexes *i*:

For
$$i \le 0$$

 $X_{i+1} = X_i + \delta_i (1 - 2^{i-2}) Y_i$
 $Y_{i+1} = Y_i + \delta_i (1 - 2^{i-2}) X_i$
 $Z_{i+1} = Z_i - \delta_i Tanh^{-1} (1 - 2^{i-2})$

For i > 0

$$X_{i+1} = X_i + \delta_i Y_i 2^{-i}$$

$$Y_{i+1} = Y_i + \delta_i X_i 2^{-i}$$

$$Z_{i+1} = Z_i - \delta_i Tanh^{-1} (2^{-i})$$

Extended Hyperbolic Cordic in Math –Cont.

Depending on the mode of operation, the quantities X, Y and Z tend to the following values, for sufficiently large *N*:

Rotation Mode	Vectoring Mode
$ \begin{aligned} x_n &= A_n (x_1 coshz_1 + y_1 sinhz_1) \\ y_n &= A_n (y_1 coshz_1 + x_1 sinhz_1) \\ z_n &= 0 \end{aligned} $	$x_{n} = A_{n} \sqrt{x_{1}^{2} - y_{1}^{2}}$ $y_{n} = 0$ $z_{n} = z_{1} + tanh^{-1}(y_{1}/x_{1})$
$A_{n} \leftarrow \left[\prod_{i=-M}^{0} \sqrt{1 - (1 - 2^{(i-2)})^{2}}\right] \left[\prod_{i=1}^{N} \sqrt{1 - 2^{-2i}}\right]$	

Range of convergence with respect to the negative iterations (M):

Μ	θ _{max} from (19)	Μ	θ _{max} from (19)
0	2.09113	5	12.42644
1	3.44515	6	15.54462
2	5.16215	7	19.00987
3	7.23371	8	22.82194
4	9.65581	9	26.98070
		10	31.48609

$$\theta_{\max} = \sum_{i=-M}^{0} Tanh^{-1} \left(1 - 2^{i-2} \right) + \left[Tanh^{-1} \left(2^{-N} \right) + \sum_{i=1}^{N} Tanh^{-1} \left(2^{-i} \right) \right]$$

DFX VHDL Design

DFX Expanded Hyperbolic Cordic Implementations

OAKLAND UNIVERSITY

DFX Barrel Shifter

If not, it means we need more than n bits.

Error Analysis

- To measure the accuracy of the implemented DFX hyperbolic CORDIC, error analysis is performed on a different cases that will cover the two formats in the DFX representation (num0, num1).
- The results are compared with the ideal values obtained in MATLAB.
- The error measures will be:

$$Relative \ Error = \frac{|\ ideal\ value\ -DFX\ CORDIC\ value\ }{|\ ideal\ value|}$$

Format & Range

- Format: [n p0 p1]
- X,Y format [32 29 25]
- Z format [32 27 25]

- Range
- X,Y:
- Num0 : [-2,2)
- Num1 : [-32,-2)U[2,32)
- Z:
- Num0 : [-8,8)
- Num1 : [-32,-8)U[8,32)

num1 Range

num0 Range

12/14/2015

DFX Expanded Hyperbolic Cordic Implementations

2^{n-p1-2}

2n-p1-2

Results-Atanh-Relative error [0 1) 1000 inputs

Results-Atanh-SNR [0 1) 1000 inputs

Results-Atanh-Relative error [0 1) 10000 inputs

Results-Atanh-SNR [0 1) 10000 inputs

OAKLAND UNIVERSITY

Results-Atanh-Relative error and SNR (0.9999999 to 0.999999998)

12/14/2015

Results-Sinh-Relative error [0 11] 1000 inputs

Results-Sinh-SNR [0 11] 1000 inputs

OAKLAND UNIVERSITY

Results-Cosh-Relative error [0 11] 1000 inputs

Results-Cosh-SNR [0 11] 1000 inputs

Results-Exp-Relative error [0 10] 1000 inputs

Results-Exp-SNR [0 10] 1000 inputs

IP Package and Peripherals

OAKLAND UNIVERSITY

IP Package and Peripherals

- Number of Iterations (positives and negatives).
- DFX format used.
- Irregularity due to:
 - Truncation of P0-P1 LSB bits when doing DFX Addition/Subtraction. Can be recovered.
 - Converting *Decimal* numbers to *Binary* and vice versa.

- X. Hu, R.G. Harber, S.C. Bass, "Expanding the range of convergence of the CORDIC algorithm," *IEEE Transactions on Computers*, vol. 40, no. 1, pp. 13-21, Jan. 1991.
- J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 200–208, 2004. c Springer-Verlag Berlin Heidelberg 2004.
- D. Llamocca, C. Agurto, "A FIXED-POINT IMPLEMENTATION OF THE EXPANDED HYPERBOLIC CORDIC ALGORITHM" Lat. Am. appl. res. v.37 n.1 Bahía Blanca ene. 2007.

Thank You

• Any Questions??