
A Dual Fixed Point implementation of Expanded Hyperbolic Cordic Algorithm

Iyad Mansour, Omar Bataineh

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

ifmansour@oakland.edu, ofbataineh@oakland.edu

Abstract—This work presents an architecture for Hyberbolic

computation in dual fixed point arithmetic that is based on the

expanded hyperbolic CORDIC algorithm, where the user can

select the 2-D domain of convergence that suits their application.

The fully parameterized hardware implementation allows us to

explore trade-offs among design parameters (numerical format,

number of iterations), resource usage, accuracy, and execution

time. We carry out an exhaustive design space exploration and

generate Pareto-optimal realizations in the resource-accuracy

space. Our approach allows us to select optimal hardware

realizations that meet or exceed accuracy requirements.

 Keywords—computer arithmetic, CORDIC, Hyberbolic, dual

fixed point.

I. INTRODUCTION

The hyperbolic CORDIC algorithm as originally proposed by

Walther [1] allows the computation of hyperbolic functions in an
efficient fashion. However, the domain of the inputs is limited in
order to guarantee that outputs converge and yield correct values, and
this limitation will not satisfy the applications in which nearly the full
range of the hyperbolic functions is needed.

Various strategies have been proposed to address the problem of

limited convergence of the hyperbolic CORDIC algorithm. One
strategy is to use mathematical identities to preprocess the CORDIC
input quantities [1]. While such mathematical identities work, there
is no single identity that will remove or reduce the limitations of all
the functions in the hyperbolic mode. In addition, the mathematical
identities are cumbersome to use in hardware applications because
their implementation requires a significant increase in processing
time and hardware [2]. Another approach, proposed by Hu et al [2],
involves a modification to the basic CORDIC algorithm (inclusion of
additional iterations) that can be readily implemented in a VLSI
architecture or in a FPGA without excessively increasing the
processing time.

One architecture for the dual-fixed-point implementation of the

hyperbolic CORDIC algorithm with the expansion scheme proposed
by Hu [2] is presented, a low cost iterative version.

One numerical formats is proposed for the inputs. For each

hyperbolic function, an analysis of this numerical format is
performed. Finally an error analysis is performed for each hyperbolic
function. The data obtained with the dual-fixed-point architectures
are contrasted with the ideal values obtained with MATLAB®.

The rest of this paper is organized as follows: In Section II, the
method used for expansion of the hyperbolic CORDIC algorithm is
presented. Section III describes the architecture implemented.
Section IV presents an analysis of the input numerical format for each
hyperbolic function, Section V presents an error analysis. Finally,
conclusions and recommendations are given.

II. METHODOLOGY

A. Original Hyperbolic CORDIC algorithm

The original hyperbolic CORDIC algorithm, first
described by

Walther [1], states the following iterative equations:

Xi+1 = Xi + δiYi2-i

Yi+1 = Yi + δiXi2-i (1)
Zi+1 = Zi – δi𝜃i

Where 𝜃i = Tanh-1(2-i) (2)

And i is the index of the iteration (i = 1, 2, 3, … 32). The
following iterations must be repeated in order to guarantee the
convergence: 4, 13, 40,… k, 3k + 1. The value of δi is either
+1 or –1 depending on the mode of operation:

Rotation: δi = -1 if zi < 0, +1 otherwise
 (3)
Vectoring: δi = -1 if xiyi < 0, +1 otherwise

In the rotation mode, the quantities X, Y and Z tend to the
following results, for sufficiently large N:

Xn  An[X0CoshZ0 + Y0SinhY0]
Yn  An[Y0CoshZ0 + X0SinhY0] (4)
Zn  0

And, in the vectoring mode, the quantities X, Y and Z tend
to the following results, for sufficiently large N:

Xn  A𝑛√𝑋0
2 − 𝑌0

2
Yn  0 (5)

Zn  Z0 + Tanh
-1(

𝑌0

𝑋0
)

Where ‘An’ is: An  ∏ √1 − 2−2𝑖𝑁
𝑖=1 (6)

mailto:ifmansour@oakland.edu
mailto:ofbataineh@oakland.edu

With a proper choice of the initial values X0, Y0, Z0 and

the operation mode, the following functions can be directly

obtained: Sinh, Cosh, Tanh-1, and exp. Additional functions

(e.g. ln, sqrt, Tanh) may be generated by applying

mathematical identities, performing extra operations and/or

using the circular or linear CORDIC algorithms [3].

B. Range of Convergance

The basic range of convergence, obtained by a method

developed by Hu[2] states the following:

Rotation Mode: |𝑍0| ≤ 𝜃𝑁 + ∑ 𝜃𝑖
𝑁
1=1 (7)

|𝑍0| ≤ 𝑡𝑎𝑛ℎ−1(2−𝑁) + ∑ 𝑡𝑎𝑛ℎ−1(2−𝑖)𝑁
1=1 (8)

|𝑍0|𝑚𝑎𝑥 ≈ 1.182, 𝑓𝑜𝑟 𝑁 → ∞ (9)
This is the restriction imposed to the domain of the

input argument of the hyperbolic functions in the rotation
mode. Note that the domain of the functions Sinh and
Cosh is〈−∞, +∞〉.

Vectoring Mode: |𝑡𝑎𝑛ℎ−1 (
𝑌0

𝑋0
)| ≤ 𝜃𝑁 + ∑ 𝜃𝑖

𝑁
1=1 (10)

→ |𝑡𝑎𝑛ℎ−1 (
𝑌0

𝑋0
)| ≤ 1.1182, 𝑓𝑜𝑟 𝑁 → ∞ (11)

→ |
𝒀𝟎

𝑿𝟎
|

𝒎𝒂𝒙
≈ 0.80694, 𝑓𝑜𝑟 𝑁 → ∞ (12)

This is the limitation imposed to the domain of the

quotient of the input arguments of the hyperbolic functions in

the vectoring mode. Note that the domain of Tanh-1

is〈−1, +1〉, and thus this function remains greatly limited in

its domain.

C. Expansion of the Range of Convergence

The convergence range described by (9) and (12) is

unsuitable to satisfy all applications of the hyperbolic

CORDIC algorithm.

One strategy to address the problem of limited

convergence is the use of mathematical identities to

preprocess the CORDIC input quantities [1]. However, a

different preprocessing scheme is necessary for each

function, making it very difficult to have a unified hyperbolic

CORDIC hardware. Moreover, the preprocessing leads to a

significant increase in processing time and hardware.

Hu et al [2] have proposed another scheme to address the

problem of the range of convergence. The approach consists

in the inclusion of additional iterations to the basic CORDIC

algorithm. As it will be shown in Section 3, the hardware and

processing time increase is bearable and suitable for VLSI

and FPGA implementation.

The method proposed by Hu consists in the inclusion of

additional iterations for negative indexes i:

𝜃𝑖 = 𝑡𝑎𝑛ℎ−1(1 − 2𝑖−2), 𝑓𝑜𝑟 𝑖 ≤ 0 (13)

Therefore, the modified algorithm results:

For 𝑖 ≤ 0

Xi+1 = Xi + δi(1 − 2𝑖−2)Yi

Yi+1 = Yi + δi(1 − 2𝑖−2)Xi (14)

Zi+1 = Zi – δi𝑇𝑎𝑛ℎ−1(1 − 2𝑖−2)

For 𝑖 > 0

Xi+1 = Xi + δiYi2-i

Yi+1 = Yi + δiXi2-i (15)

Zi+1 = Zi – δi𝑇𝑎𝑛ℎ−1 2−𝑖
The trend of the results for the rotation and vectoring

mode is the same as that stated in (4) and (5). The value of δi

is the same as indicated in (3). But the quantity An, described

in (6), must be redefined as follows:

𝐴𝑛 ← [∏ √1 − (1 − 2(1−2))2

0

𝑖= −𝑀

] [∏ √1 − 2−2𝑖

𝑁

𝑖=1

] (16)

The range of convergence, stated in (7) and (10) for the

basic hyperbolic CORDIC algorithm, now becomes:

Rotation Mode: |𝑍𝑜| ≤ 𝜃𝑚𝑎𝑥 (17)

Vectoring Mode: |𝑇𝑎𝑛ℎ−1 (
𝑌0

𝑋0
⁄)| ≤ 𝜃𝑚𝑎𝑥 (18)

Where:

𝜃𝑚𝑎𝑥 = ∑ 𝑇𝑎𝑛ℎ−1(1 − 2𝑖−2)

0

𝑖=−𝑀

+

 [𝑇𝑎𝑛ℎ−1(2−𝑁) + ∑ 𝑇𝑎𝑛ℎ−1(2−𝑖)

𝑁

𝑖=𝑖

] (19)

Although (17) and (18) look nearly the same, they are

interpreted differently: (17) states the maximum input angle

the user can enter to obtain a valid result, whereas (18) states

the maximum value attainable for the Tanh-1 function to

which Z-Z0 tends (according to (5)). If Z0=0, (18) states the

maximum value attainable at Z, and therefore imposes a

limitation to the inputs X0 and Y0.

The values for θmax have been tabulated for M between 0

and 10 and are shown in Table 1.

M θmax from(19)

0 2.09113

1 3.44515

2 5.16215

3 7.23371

4 9.65581

5 12.42644
Table 1: θmax versus M for the Modified Hyperbolic CORDIC

algorithm (after Hu[2])

For example, if M = 5 is chosen (six additional iterations),

then θmax=12.42644, and the domain of the functions Cosh

and Sinh is greatly expanded to [-12.42644,+12.42644]

compared with the domain in (9). Similarly, the range of the

function Tanh-1 is increased to [-12.42644,+12.42644], which

means that the domain of the quotient Y0/X0 becomes nearly

〈−1, +1〉, which is the entire domain of Tanh-1. From the last

example, it is clear that the expansion scheme does work. The

more domain of the functions is needed, the more the

iterations (M+1) that must be executed.

III. ARCHITECTURE

The architecture presented here implement the expanded

hyperbolic CORDIC algorithm described in (14) and (15).

The architecture is such that the inputs and outputs have an

identical bit width. The intermediate registers and operators

can be of higher bit width due to particular details of the

algorithm and precision considerations which will be

explored later in this paper. In Section IV, we explore the

particularities of the architecture for Tanh-1, Sinh, Cosh, and

exp. It is worth to note, however, that a unified hyperbolic

ORDIC hardware, capable of obtaining all the functions

within the same architecture, is desirable for certain

applications, as has been shown in [5]. The same principle

which will be applied to the analysis of Tanh-1, Sinh, Cosh

and exp can be applied to this case and thus the optimum

architecture can be attained. In addition, there exists a

precision consideration which extends the bit width: it is a

‘rule of thumb’ found in [5]: “If n bits is the desired output

precision, the internal registers should have log2(n)

additional guard bits at the LSB position”. This

consideration, although arbitrary, have proved to work very

well. With these considerations in mind, one dual-fixed-point

architectures is presented, which is a low cost iterative

version.

Fig. 1 depicts the architecture that implements the equations

(14) and (15) in an iterative fashion. The two LUTs (look-up

tables) are needed to store the two sets of elementary angles

defined in equations (2) and (13). The process begins when a

start signal is asserted. After ‘M+1+N+v’ clock cycles (‘v’ is

the number of repeated iterations stated in Section II.A), the

result is obtained in the registers X, Y and Z, and a new

process can be started.

Figure 1

Inputs: X_0, Y_0, and Z_0

Outputs: X_N, Y_N, and Z_N

j = -5 0 it = 132

There are two stages: One that implements the iterations for

i ≤ 0 and is depicted in the upper part, it needs two

multiplexers, two registers, four adders and two barrel

shifters. This is the most critical part of the design, and

introduces considerable delay, thus reducing the frequency of

operation. The lower part of Figure (1) implements the

iterations for i > 0, this is a classical hardware found in many

textbooks and papers.

Figure 2

Figure (2) shows a state machine that controls the load of

the registers, the data that passes onto the multiplexers, the

add/subtract decision of the adder/substracters, and the count

given to the barrel shifters.

IV. EXPERIMENTAL SETUP

For our dual fixed-point (DFX) hardware, we used the
Vivado IDE from Xilinx to simulate our hardware, in addition
to that an actual hardware implementation have been
implemented on the Zypo board (Zynq architecture + ARM
microprocessor).

Our design implements the Tanh-1, Cosh, Sinh and Exp.
each of the mentioned functions has a different setup to get the
desired accuracy as disciped in the following sections.

A. Inverse Hyperbolic Tangent (Tanh-1)

To obtain the Tanh-1 function in the output Z, we have to
set Z0 = 0, and X0 = 1, and the operational mode to

Vectoring mode, Then after the appropriate iterations the
ZN  Tanh-1 (Y0).

Since the domain of the Tanh-1 is (-1, 1) the input Y0

is restricted to 1 integer bit in the 2’s complement
fractional dual fixed point representation, (|Y0| < 1), But,
as the input X0 = 1 requires 2 integer bits for correct
representation, and the format for X and Y must be the
same, then X and Y must have 2 integer bits. And since
the DFX representation have been used, one more bit is
needed as an exponent (Num0, Num1 selection) so the
final format used to represent X and Y is selected to be [N
P0 P1] = [32 29 25]

The critical case occurs when Y0 is at its maximum

value, from which the maximum value of ZN is obtained.
And since we are using M=5 negative iteration in our
design the max to be represented in Z equal to 12.42644
which needs at least 5 integer bits in the 2’s complement
fractional DFX representation, and to get the two format
as an output (the Num0, and Num1) the following format
is selected to represent the Z [N P0 P1] = [32 27 25]
which will cover the range [-8, 8) as Num0 and [-32, 32)
as Num1.

B. Hyperbolic Sine and Hyperbolic Cosine.

To obtain the value of the Sinh and Cosh functions
in the X and Y output, we have to set Y0 = 0, and X0 = 1,
and the operational mode to Rotational mode, Then after
the appropriate iterations the XN  An Cosh(Z0) and YN
 An Sinh(Z0).

Since the domain of the Sinh and Cosh is (-∞, ∞)
there is no input restriction. So we select the format [32
27 25] for Z in the DFX which will give the following
two range:
 [-8, 8) if Num0
 [-32, 32) if Num1

To cover test cases from the Num0 and Num1
regions we select the input Z to be (-11, 11).

The critical case occurs when |Z0| is at its maximum
value = 11 (in our selection), that will give a values for X
and Y to be less than 16, so the format [32 29 25] for X
and Y is selected to cover the range selected for the input
Z0.
The range for X and Y will be

[-2, 2) if Num0
 [-32, 32) if Num1

C. Exponential (ex)

To obtain the value of the exponential functions in the X and
Y output, we have to set Y0 = X0 = 1, and the operational
mode to Rotational mode, Then after the appropriate
iterations the XNAn eZ0 and YN A eZ0
Since the domain of the ex is (-∞, ∞) there is no input
restriction. So we select the format [32 27 25] for Z in
the DFX which will give the following two range:

 [-8, 8) if Num0
 [-32, 32) if Num1

To cover test cases from the Num0 and Num1 regions we
select the input Z to be (-10, 10).

The critical case occurs when |Z0| is at its maximum value
= 10 (in our selection), that will give a values for X and Y
to be less than 12, so the format [32 29 25] for X and Y
is selected to cover the range selected for the input Z0.
The range for X and Y will be

[-2, 2) if Num0
 [-32, 32) if Num1

V. RESULTS

To measure the accuracy of the implemented DFX

hyperbolic CORDIC an error analysis is performed on a

different cases that will cover the two formats in the DFX

representation (num0, num1), the results are compared

with the ideal values obtained in MATLAB.

The error measures will be:

The following subsections describes the detailed error

analysis for each implemented function.

A. Inverse Hyperbolic Tangent (Tanh-1)

Figure (3) show the relative error for the Tanh-1 on the entire

domain of the Tanh-1 (-1, 1), although the domain of Tanh-1

is (-1, 1) we have just plotted for [0, 1) since Tanh-1 is an odd

function,

We have taken 1000 value equally spaced along the domain

(step = 0.001)

Figure 3

Figure (4) show the relative error for the Tanh-1 on the range

[0.999999, 0.999999998], this range have been selected such

that the results will cover the two DFX formats Num0 and

Num1.

We have taken 1000 value equally spaced along the domain

(step = 0.001)

Figure 4

B. Hyperbolic Sine and Hyperbolic Cosine.

Figure (5) show the relative error for the Sinh on the range

[0, 11] this range have been selected such that the results will

cover the two DFX formats Num0 and Num1.

Figure 5

Figure (6) show the relative error for the Cosh on the range

[0, 11] this range have been selected such that the results will

cover the two DFX formats Num0 and Num1.

Figure 6

C. Exponential (ex)

Figure (7) show the relative error for the ex on the range [0,

10] this range have been selected such that the results will

cover the two DFX formats Num0 and Num1.

Figure 7

CONCLUSIONS
• The expansion scheme proposed by Hu[2], despite the

additional hardware needed, has proved to be amenable for

our FPGA implementation, as the clock rate and resource

effort indicates. The function Tanh-1 gets expanded in all its

domain, and the functions Cosh and Sinh have a greater

domain as the bit width increases.

• The error analysis shows certain irregularities in the relative

error performance. This irregularities are due to the truncation

of the fractional bits, conversion between decimal and binary

and the ever-limited number of basic and additional iterations.

We have tested the CORDIC algorithm in MATLAB® and

have found that the error performance is uniform.

• Parametrized VHDL design can be implemented to test

more than format and compare each format on each

Hyberbolic function.

•Designing a dual-fixed-point adder/subtraector which

recovers truncated fractional bits can enhance the output

which yields to minimal error.

REFERENCES

[1] D. Llamocca, C. Agurto, “A Fixed-point implementation of the
expanded hyperbolic CORDIC algorithm,” Latin American Applied
Research, vol. 37, no. 1, pp. 83-91, Jan. 2007

[2] X. Hu, R.G. Harber, S.C. Bass, “Expanding the range of convergence
of the CORDIC algorithm,” IEEE Transactions on Computers, vol. 40,
no. 1, pp. 13-21, Jan. 1991.

[3] J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp.
200–208, 2004. c Springer-Verlag Berlin Heidelberg 200

