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Abstract—This work presents an architecture for Hyberbolic 

computation in dual fixed point arithmetic that is based on the 

expanded hyperbolic CORDIC algorithm, where the user can 

select the 2-D domain of convergence that suits their application. 

The fully parameterized hardware implementation allows us to 

explore trade-offs among design parameters (numerical format, 

number of iterations), resource usage, accuracy, and execution 

time. We carry out an exhaustive design space exploration and 

generate Pareto-optimal realizations in the resource-accuracy 

space. Our approach allows us to select optimal hardware 

realizations that meet or exceed accuracy requirements.  

  
 Keywords—computer arithmetic, CORDIC, Hyberbolic, dual 

fixed point. 

I. INTRODUCTION 

 
The hyperbolic CORDIC algorithm as originally proposed by 

Walther [1] allows the computation of hyperbolic functions in an 
efficient fashion. However, the domain of the inputs is limited in 
order to guarantee that outputs converge and yield correct values, and 
this limitation will not satisfy the applications in which nearly the full 
range of the hyperbolic functions is needed.  

 
Various strategies have been proposed to address the problem of 

limited convergence of the hyperbolic CORDIC algorithm. One 
strategy is to use mathematical identities to preprocess the CORDIC 
input quantities [1]. While such mathematical identities work, there 
is no single identity that will remove or reduce the limitations of all 
the functions in the hyperbolic mode. In addition, the mathematical 
identities are cumbersome to use in hardware applications because 
their implementation requires a significant increase in processing 
time and hardware [2]. Another approach, proposed by Hu et al [2], 
involves a modification to the basic CORDIC algorithm (inclusion of 
additional iterations) that can be readily implemented in a VLSI 
architecture or in a FPGA without excessively increasing the 
processing time. 

  
One architecture for the dual-fixed-point implementation of the 

hyperbolic CORDIC algorithm with the expansion scheme proposed 
by Hu [2] is presented, a low cost iterative version.  

 
One numerical formats is proposed for the inputs. For each 

hyperbolic function, an analysis of this numerical format is 
performed.  Finally an error analysis is performed for each hyperbolic 
function. The data obtained with the dual-fixed-point architectures 
are contrasted with the ideal values obtained with MATLAB®. 

The rest of this paper is organized as follows: In Section II, the 
method used for expansion of the hyperbolic CORDIC algorithm is 
presented. Section III describes the architecture implemented. 
Section IV presents an analysis of the input numerical format for each 
hyperbolic function, Section V presents an error analysis. Finally, 
conclusions and recommendations are given. 
 

II. METHODOLOGY 

A. Original Hyperbolic CORDIC algorithm 

The original hyperbolic CORDIC algorithm, first 
described by 

Walther [1], states the following iterative equations:  
 

Xi+1 = Xi + δiYi2-i 

Yi+1 = Yi + δiXi2-i   (1) 
Zi+1 = Zi – δi𝜃i 
 
Where 𝜃i = Tanh-1(2-i)   (2) 
 

And i is the index of the iteration (i = 1, 2, 3, … 32). The 
following iterations must be repeated in order to guarantee the 
convergence: 4, 13, 40,… k, 3k + 1. The value of δi is either 
+1 or –1 depending on the mode of operation: 

 

Rotation: δi = -1 if zi < 0, +1 otherwise  
     (3) 
Vectoring: δi = -1 if xiyi < 0, +1 otherwise 

 

In the rotation mode, the quantities X, Y and Z tend to the 
following results, for sufficiently large N: 

 

Xn   An[X0CoshZ0 + Y0SinhY0] 
Yn   An[Y0CoshZ0 + X0SinhY0] (4) 
Zn   0 

 

And, in the vectoring mode, the quantities X, Y and Z tend 
to the following results, for sufficiently large N: 

Xn   A𝑛√𝑋0
2 − 𝑌0

2  
Yn   0    (5) 

Zn   Z0 + Tanh
-1(

𝑌0

𝑋0
) 

Where ‘An’ is: An  ∏ √1 − 2−2𝑖𝑁
𝑖=1   (6) 
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With a proper choice of the initial values X0, Y0, Z0 and 

the operation mode, the following functions can be directly 

obtained: Sinh, Cosh, Tanh-1, and exp. Additional functions 

(e.g. ln, sqrt, Tanh) may be generated by applying 

mathematical identities, performing extra operations and/or 

using the circular or linear CORDIC algorithms [3]. 
 

B. Range of Convergance 

The basic range of convergence, obtained by a method 

developed by Hu[2] states the following:  

 

Rotation Mode: |𝑍0| ≤ 𝜃𝑁 +  ∑ 𝜃𝑖
𝑁
1=1    (7) 

|𝑍0| ≤ 𝑡𝑎𝑛ℎ−1(2−𝑁) +  ∑ 𝑡𝑎𝑛ℎ−1(2−𝑖)𝑁
1=1  (8) 

|𝑍0|𝑚𝑎𝑥 ≈ 1.182, 𝑓𝑜𝑟 𝑁 →  ∞   (9) 
This is the restriction imposed to the domain of the 

input argument of the hyperbolic functions in the rotation 
mode. Note that the domain of the functions Sinh and 
Cosh is〈−∞, +∞〉. 

 

Vectoring Mode: |𝑡𝑎𝑛ℎ−1 (
𝑌0

𝑋0
)| ≤ 𝜃𝑁 + ∑ 𝜃𝑖

𝑁
1=1  (10) 

→ |𝑡𝑎𝑛ℎ−1 (
𝑌0

𝑋0
)| ≤ 1.1182, 𝑓𝑜𝑟 𝑁 → ∞  (11) 

→ |
𝒀𝟎

𝑿𝟎
|

𝒎𝒂𝒙
≈ 0.80694, 𝑓𝑜𝑟 𝑁 → ∞  (12) 

 

This is the limitation imposed to the domain of the 

quotient of the input arguments of the hyperbolic functions in 

the vectoring mode. Note that the domain of Tanh-1 

is〈−1, +1〉, and thus this function remains greatly limited in 

its domain. 
 

C. Expansion of the Range of Convergence 

The convergence range described by (9) and (12) is 

unsuitable to satisfy all applications of the hyperbolic 

CORDIC algorithm. 

One strategy to address the problem of limited 

convergence is the use of mathematical identities to 

preprocess the CORDIC input quantities [1]. However, a 

different preprocessing scheme is necessary for each 

function, making it very difficult to have a unified hyperbolic 

CORDIC hardware. Moreover, the preprocessing leads to a 

significant increase in processing time and hardware. 

Hu et al [2] have proposed another scheme to address the 

problem of the range of convergence. The approach consists 

in the inclusion of additional iterations to the basic CORDIC 

algorithm. As it will be shown in Section 3, the hardware and 

processing time increase is bearable and suitable for VLSI 

and FPGA implementation. 

 

The method proposed by Hu consists in the inclusion of 

additional iterations for negative indexes i: 

𝜃𝑖 = 𝑡𝑎𝑛ℎ−1(1 − 2𝑖−2), 𝑓𝑜𝑟 𝑖 ≤ 0  (13) 

Therefore, the modified algorithm results: 

For  𝑖 ≤ 0 

Xi+1 = Xi + δi(1 − 2𝑖−2)Yi 

Yi+1 = Yi + δi(1 − 2𝑖−2)Xi  (14) 

Zi+1 = Zi – δi𝑇𝑎𝑛ℎ−1(1 − 2𝑖−2) 
 

For 𝑖 > 0 

 
Xi+1 = Xi + δiYi2-i 

Yi+1 = Yi + δiXi2-i   (15) 

Zi+1 = Zi – δi𝑇𝑎𝑛ℎ−1 2−𝑖  
The trend of the results for the rotation and vectoring 

mode is the same as that stated in (4) and (5). The value of δi 

is the same as indicated in (3). But the quantity An, described 

in (6), must be redefined as follows: 

𝐴𝑛 ← [ ∏ √1 − (1 − 2(1−2))2

0

𝑖= −𝑀

] [∏ √1 − 2−2𝑖

𝑁

𝑖=1

] (16) 

The range of convergence, stated in (7) and (10) for the 

basic hyperbolic CORDIC algorithm, now becomes: 

Rotation Mode: |𝑍𝑜| ≤ 𝜃𝑚𝑎𝑥   (17) 

Vectoring Mode: |𝑇𝑎𝑛ℎ−1 (
𝑌0

𝑋0
⁄ )| ≤ 𝜃𝑚𝑎𝑥 (18) 

Where: 

𝜃𝑚𝑎𝑥 =  ∑ 𝑇𝑎𝑛ℎ−1(1 − 2𝑖−2)

0

𝑖=−𝑀

+ 

 [𝑇𝑎𝑛ℎ−1(2−𝑁) + ∑ 𝑇𝑎𝑛ℎ−1(2−𝑖)

𝑁

𝑖=𝑖

]                        (19) 

 

Although (17) and (18) look nearly the same, they are 

interpreted differently: (17) states the maximum input angle 

the user can enter to obtain a valid result, whereas (18) states 

the maximum value attainable for the Tanh-1 function to 

which Z-Z0 tends (according to (5)). If Z0=0, (18) states the 

maximum value attainable at Z, and therefore imposes a 

limitation to the inputs X0 and Y0. 

The values for θmax have been tabulated for M between 0 

and 10 and are shown in Table 1. 

 

M θmax from(19) 

0 2.09113 

1 3.44515 

2 5.16215 

3 7.23371 

4 9.65581 

5 12.42644 
Table 1: θmax versus M for the Modified Hyperbolic CORDIC 

algorithm (after Hu[2]) 

For example, if M = 5 is chosen (six additional iterations), 

then θmax=12.42644, and the domain of the functions Cosh 

and Sinh is greatly expanded to [-12.42644,+12.42644] 

compared with the domain in (9). Similarly, the range of the 

function Tanh-1 is increased to [-12.42644,+12.42644], which 

means that the domain of the quotient Y0/X0 becomes nearly 

〈−1, +1〉, which is the entire domain of Tanh-1. From the last 



example, it is clear that the expansion scheme does work. The 

more domain of the functions is needed, the more the 

iterations (M+1) that must be executed. 

 

 
 

III. ARCHITECTURE 

The architecture presented here implement the expanded 

hyperbolic CORDIC algorithm described in (14) and (15). 

The architecture is such that the inputs and outputs have an 

identical bit width. The intermediate registers and operators 

can be of higher bit width due to particular details of the 

algorithm and precision considerations which will be 

explored later in this paper. In Section IV, we explore the 

particularities of the architecture for Tanh-1, Sinh, Cosh, and 

exp. It is worth to note, however, that a unified hyperbolic  

ORDIC hardware, capable of obtaining all the functions 

within the same architecture, is desirable for certain 

applications, as has been shown in [5]. The same principle 

which will be applied to the analysis of Tanh-1, Sinh, Cosh 

and exp can be applied to this case and thus the optimum 

architecture can be attained. In addition, there exists a 

precision consideration which extends the bit width: it is a 

‘rule of thumb’ found in [5]: “If n bits is the desired output 

precision, the internal registers should have log2(n) 

additional guard bits at the LSB position”. This 

consideration, although arbitrary, have proved to work very 

well. With these considerations in mind, one dual-fixed-point 

architectures is presented, which is a low cost iterative 

version. 

Fig. 1 depicts the architecture that implements the equations 

(14) and (15) in an iterative fashion. The two LUTs (look-up 

tables) are needed to store the two sets of elementary angles 

defined in equations (2) and (13). The process begins when a 

start signal is asserted. After ‘M+1+N+v’ clock cycles (‘v’ is 

the number of repeated iterations stated in Section II.A), the 

result is obtained in the registers X, Y and Z, and a new 

process can be started. 

 
Figure 1 

Inputs: X_0, Y_0, and Z_0 

Outputs: X_N, Y_N, and Z_N 

j = -5 0  it = 132 

There are two stages: One that implements the iterations for 

i ≤ 0 and is depicted in the upper part, it needs two 

multiplexers, two registers, four adders and two barrel 

shifters. This is the most critical part of the design, and 

introduces considerable delay, thus reducing the frequency of 

operation. The lower part of Figure (1) implements the 

iterations for i > 0, this is a classical hardware found in many 

textbooks and papers. 



 
Figure 2 

Figure (2) shows a state machine that controls the load of 

the registers, the data that passes onto the multiplexers, the 

add/subtract decision of the adder/substracters, and the count 

given to the barrel shifters. 

 

IV. EXPERIMENTAL SETUP 

For our dual fixed-point (DFX) hardware, we used the 
Vivado IDE from Xilinx to simulate our hardware, in addition 
to that an actual hardware implementation have been 
implemented on the Zypo board (Zynq architecture + ARM 
microprocessor). 

Our design implements the Tanh-1, Cosh, Sinh and Exp. 
each of the mentioned functions has a different setup to get the 
desired accuracy as disciped in the following sections. 

A. Inverse Hyperbolic Tangent (Tanh-1) 

To obtain the Tanh-1 function in the output Z, we have to 
set Z0 = 0, and X0 = 1, and the operational mode to 

Vectoring mode, Then after the appropriate iterations the 
ZN   Tanh-1 (Y0). 
 

Since the domain of the Tanh-1 is (-1, 1) the input Y0 

is restricted to 1 integer bit in the 2’s complement 
fractional dual fixed point representation, (|Y0| < 1), But, 
as the input X0 = 1 requires 2 integer bits for correct 
representation, and the format for X and Y must be the 
same, then X and Y must have 2 integer bits. And since 
the DFX representation have been used, one more bit is 
needed as an exponent (Num0, Num1 selection) so the 
final format used to represent X and Y is selected to be [N   
P0    P1] = [32   29   25] 

      
The critical case occurs when Y0 is at its maximum 

value, from which the maximum value of ZN is obtained. 
And since we are using M=5 negative iteration in our 
design the max to be represented in Z equal to 12.42644 
which needs at least 5 integer bits in the 2’s complement 
fractional DFX representation, and to get the two format 
as an output (the Num0, and Num1) the following format 
is selected to represent the Z [N   P0   P1] = [32   27   25] 
which will cover the range [-8, 8) as Num0 and [-32, 32) 
as Num1.  

B. Hyperbolic Sine and Hyperbolic Cosine. 

To obtain the value of the Sinh and Cosh functions 
in the X and Y output, we have to set Y0 = 0, and X0 = 1, 
and the operational mode to Rotational mode, Then after 
the appropriate iterations the XN   An Cosh(Z0) and YN 
  An Sinh(Z0). 
 

Since the domain of the Sinh and Cosh is (-∞, ∞) 
there is no input restriction. So we select the format [32   
27   25] for Z in the DFX which will give the following 
two range: 
 [-8, 8)        if   Num0 
 [-32, 32)    if   Num1 
 

To cover test cases from the Num0 and Num1 
regions we select the input Z to be (-11, 11). 

The critical case occurs when |Z0| is at its maximum 
value = 11 (in our selection), that will give a values for X 
and Y to be less than 16, so the format [32   29   25] for X 
and Y is selected to cover the range selected for the input 
Z0. 
The range for X and Y will be 
  

[-2, 2)        if   Num0 
 [-32, 32)    if   Num1 

C. Exponential (ex) 

To obtain the value of the exponential functions in the X and 
Y output, we have to set Y0 = X0 = 1, and the operational 
mode to Rotational mode, Then after the appropriate 
iterations the XNAn eZ0 and YN A eZ0 
Since the domain of the ex is (-∞, ∞) there is no input 
restriction. So we select the format [32   27   25] for Z in 
the DFX which will give the following two range: 



 [-8, 8)        if   Num0 
 [-32, 32)    if   Num1 
 
To cover test cases from the Num0 and Num1 regions we 
select the input Z to be (-10, 10). 
 
The critical case occurs when |Z0| is at its maximum value 
= 10 (in our selection), that will give a values for X and Y 
to be less than 12, so the format [32   29   25] for X and Y 
is selected to cover the range selected for the input Z0. 
The range for X and Y will be 
  

[-2, 2)        if   Num0 
 [-32, 32)    if   Num1 
 

V. RESULTS 

To measure the accuracy of the implemented DFX 

hyperbolic CORDIC an error analysis is performed on a 

different cases that will cover the two formats in the DFX 

representation (num0, num1), the results are compared 

with the ideal values obtained in MATLAB. 

The error measures will be: 

 

The following subsections describes the detailed error 

analysis for each implemented function.   

A. Inverse Hyperbolic Tangent (Tanh-1) 

Figure (3) show the relative error for the Tanh-1 on the entire 

domain of the Tanh-1 (-1, 1), although the domain of Tanh-1 

is (-1, 1) we have just plotted for [0, 1) since Tanh-1 is an odd 

function,                                                          

We have taken 1000 value equally spaced along the domain 

(step = 0.001)  

 
Figure 3 

 

Figure (4) show the relative error for the Tanh-1 on the range 

[0.999999, 0.999999998], this range have been selected such 

that the results will cover the two DFX formats Num0 and 

Num1.                                     

We have taken 1000 value equally spaced along the domain 

(step = 0.001) 

 
Figure 4 

B. Hyperbolic Sine and Hyperbolic Cosine. 

Figure (5) show the relative error for the Sinh on the range 

[0, 11] this range have been selected such that the results will 

cover the two DFX formats Num0 and Num1. 

 
Figure 5 

Figure (6) show the relative error for the Cosh on the range 

[0, 11] this range have been selected such that the results will 

cover the two DFX formats Num0 and Num1. 

 

Figure 6 

 

 

 

 

 

 

 



C. Exponential (ex) 

Figure (7) show the relative error for the ex on the range [0, 

10] this range have been selected such that the results will 

cover the two DFX formats Num0 and Num1. 

 

Figure 7 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 
• The expansion scheme proposed by Hu[2], despite the 

additional hardware needed, has proved to be amenable for 

our FPGA implementation, as the clock rate and resource 

effort indicates. The function Tanh-1 gets expanded in all its 

domain, and the functions Cosh and Sinh have a greater 

domain as the bit width increases. 

• The error analysis shows certain irregularities in the relative 

error performance. This irregularities are due to the truncation 

of the fractional bits, conversion between decimal and binary 

and the ever-limited number of basic and additional iterations. 

We have tested the CORDIC algorithm in MATLAB® and 

have found that the error performance is uniform. 

• Parametrized VHDL design can be implemented to test 

more than format and compare each format on each 

Hyberbolic function. 

•Designing a dual-fixed-point adder/subtraector which 

recovers truncated fractional bits can enhance the output 

which yields to minimal error. 
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