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Abstract—This work presents a hardware design, verification 

and an implementation in a FPGA of a Dual Fixed-Point 

(DFX) calculator. The basic arithmetic operations: addition, 

subtraction, multiplication and division were perform by three 

modules that were generically designed to work with DFX 

numerical representation to archive a higher dynamic range 

than fixed point with much less resources requirement than 

floating point arithmetic. In this work, we show how different 

format of DFX can lead to higher precision and the tradeoff 

with resources and timing. We strongly believed that DFX has 

enormous potential to be used in dynamic partial 

reconfiguration (DPR) for runtime power consumption, 

precision, accuracy and resources optimization. 

I. INTRODUCTION 

The two most common ways to represent real numbers in 
computer arithmetic are floating point and fixed point. 
Floating point offers a better dynamic range but requires 
more hardware resources to implement the basic: addition, 
subtraction, multiplication and division. On the other 
hand, fixed point representation requires significant less 
hardware resources due to the fact that numbers are 
treated as integer in the computing of the basic operations. 
However, fixed point’s disadvantage is that is it has a 
smaller dynamic range and it’s not flexible in representing 
big numbers and small numbers once a certain format is 
picked. Dual fixed point (DFX) representation is a novel 
idea which tries to overcome the limited dynamic range of 
fixed point while at the same time not requiring as many 
hardware resources as a floating point [1]. DFX 
representation defines two different fixed point numbers 
within each DFX number [2]. The most significand bit 
(MSB) is called exponent which is cero for num0’s 
numbers and one for num1’s numbers. Both, num0 and 
num1, have p0 and p1 bits respectively, for the fractional 
part of the number. Conventionally num0 represents small 
numbers with a higher precision for the fractional part. 
Numbers that are big enough that cannot be represented 
with as a num0 are represented with less bits in their 
fractional. In this project we designed, verified and 
implemented the four basic operations in three hardware 
modules: an adder/subtractor, multiplier and divider.  
Moreover, the modules designed were generic which 
allows the implementation of them for different numeric 
representation therefore it is possible to optimize for 
hardware resources and precision as desired. This 
document is layout in the following structure: Section II 
presents the methodology followed in the project and 
explains in detail how the three different modules work. 

Section III explains how the modules were tested and 
verified.  Section IV shows the results obtained from the 
experimental setup as well as other metrics that were used. 
Finally, conclusion are drawn based on the 
aforementioned results. 

 

II. METHODOLOGY 

Each DFX number is represented by a total of N bits, the 

first being the exponent which indicates if the number is 

represented as num0 or a num1. The N-1 bits following the 

exponent conform the number in complement’s 2. In the 

case of num0 the number, N-1 bits, has p0 bits for 

representing the fractional part. On the other hand, num1’s 

numbers have p1 for representing the fractional part. The 

methodology approach that was used for the three modules 

development was designed them as generic cores, were N, 

p0 and p1 are the parameters used to customized each of the 

modules. In the case of the divider the number of precision 

bits, x, it’s also a parameter. This feature allows different 

dynamic range, numeric range and resources usage 

according to every application that could be developed in 

the future. Moreover, enabling dynamic partial 

reconfiguration (DPR) for power consumption, precision 

and resources usage optimization as demonstrated in [3]. 
. 

A. Generic DFX Adder/Subtractor 

The architecture for the generic DFX adder/subtractor was 

based on the class notes [4].  Figure 1, depicts the internal 

architecture. It is based on three main blocks, the pre-scaler 

which aligns the two numbers that can be the four 

combinations of num0 and num1. The pre-scaler module 

also keep the p0-p1 bits in case the number came out to be a 

numo0. Thus not losing precision when it’s possible. The 

adder/subtractor module is basically an integer adder which 

also was a input signal (addsub) that determines if the 

operation that is going to be computed is an addition, in the 

case of addsub is cero or subtraction in case it is one. The 

adder also calculates the 2’s complement when subtracting 

in that case the operand B is negated. This is important 

when using inserting the input values because it the order 

will affect the result. The adder also calculates the xor of the 

two most significant bits for the overflown-1 signal. The 

third module is called the post-scaler and integrates the 

range detector circuit, a control circuit, shifters and 

multiplexers. This module, compares p0-p1+1 bits from the 



MSB-1 of the addition/subtraction result. If all those bits are 

either ceros or ones then exponent signal, E, gets the right 

exponent. Nevertheless, the result could be overflow, the 

control circuit deals with those cases implementing a simple 

true table. A mux implement the three possible situation if 

the number is no a DFX overflow. If the number is the same 

as N bits from the adder/subtractor or if it has to be shifter 

from a num0 representation to a num1 representation or the 

other way around in which case precision bits, if there are 

from the pre-scaler, are added in case it is addition. 
. 

 
Figure 1. Architecture of DFX adder/subtractor 

 
As it can be seen from the archicture the circuit is a pure 
combinational circuit. However, in an implementation we 
should add registers at the input and at the output for all the 
signals. 
 

B. Generic DFX Multiplier 

The design for the generic DFX multiplier was based on the 
unsigned integer multiplication cover in class [2].  Figure 2, 
shows the architecture of the DFX multiplier. This module 
has as inputs operand A and operand B with N bits, clock, 
reset and a start signal to start the multiplication. The outputs 
are the DFX product with N bits, a DFX overflow signal and 
the done signal. Due to the fact the multiplier can only deal 
with positive numbers, the two operands are first converted 
into positive 2’s complement representation in case they are 
negative. At the same time, if there is going to be a sign 
change to the product because only one operand number was 
negative then the sign signal keeps asserted. The iterative 
unsigned multiplier replicates the traditional way of 
multiplying. By adding one of the operands every time the 
LSB of the other operand is one and then shifting this last 
operand until it becomes zero we can compute the integer 
unsigned multiplication. As explain by the algorithm we 
need at least the bit number of the operand being shifted plus 
one. In the case of the DFX multiplier, the two operands and 
the output are represented in the same [N p0 p1] format thus 
we need N+1 clock cycles in the worst case scenario. The 

range detection module is responsible of determining if there 
is DFX overflow, slicing the product according to the 
possible outcomes due to the inputs number representation, 
determine if the num1 candidate can be represented as a the 
num0 candidate and changing the sign of the candidates if 
the sign signal is asserted. 

 

 
Figure 2. Architecture of DFX multiplier. 

C. Generic DFX  Divider 

The design architecture for the generic DFX divider is 

shown in figure 3. The algorithm to compute the division 

for DFX as based on the concept of fixed-point number 

division learnt in class [2]. The inputs for this module are 

the dividend and divisor represented in [N p0 p1]. 

Additionally there is a clock, reset and start signals. The 

outputs of this core are the DFX overflow signal, the done 

signal and the quotient represented in [N p0 p1]. The core 

first get the positive numbers for the dividend and for the 

divisor. Similarly as the case of the DFX multiplier, if we 

need to change the sign of the quotient we keep the sign 

signal. After both operands are positive, it could be the case 

that the dividend is num0 and the divisor is num1 or the 

other way around. The alignment is performed and precision 

bit are added to the dividend. In order to keep the signals the 

same size we do the same to the divisor but we add the bit in 

the most significand part of the number thus no affecting the 

number. It’s important to notices that alignments and 

precision bit are always ceros because we are working with 

positive numbers. Inside the iterative divisor a finite state 

machine will perform the subtractions and shifts based on 

comparisons similarly than manual division in which we 

increase the digits we take in case the number is smaller 

than the divisor or we perform the subtraction of a part of 

the dividend and the divisor. After that, a range detection 

circuit will slice the output quotient in difference in a num0 

and a num1 candidate. The point of reference is the number 

of precision bits that we inserted previously. Then the range 

detection circuit compares the p0-p1+1 bits of the num1 and 

if they are all the same the num0 is taken. Concurrently a 

overflow detection circuit perform the DFX overflow check. 



Depending on the precision bits, p1 and p0 the circuit 

checks of bits that are asserted but should not be. 

 

 
Figure 3. Architecture of DFX divider 

 

III. EXPERIMENTAL SETUP 

In the first stage of the development of the modules the 

homework solutions were taken as inputs to verify the 

simulations using Vivados’ simulator. However, due to the 

fact we wanted to test a large amount of numbers to verify 

the modules properly and measure the relative error due to 

precision lost by performing the operation in a given DFX 

format in contrast to a general purpose computer with 

double precision floating point representation, we use 

Matlab to generate random operands for the VHDL test 

bench and improve the robustness of the testing. Figure 4 

shows the algorithm to generate random floating point 

numbers ranging between maximum number that can be 

represented by num1 number to minimum number that can 

be represented by num1. 
x = 2n * rand([1,100]) - n; % x random number generator 

y = 2n * rand([1,100]) - n; % y random number generator 

Where n = number of bits. (100 different random numbers are generated) 

 

Once the numbers are generated, they are sorted out as 

num0 or num1 using range formula for num1 and num0. At 

the same time they are converted into their num1 or num0 

representation using quantizers of fixed data type and n_P1 

and n_P0 configuration. 
% num0 boundary 

b1 = -2^((n-1)-1) / 2^P0; 

b2 = (2^((n-1)-1) - 1) / 2^ P0; 

% num1 boundary 

a1 = -2^(n- P1-2); 

a2 = (2^(n- P1-2)) - 2^(- P0); 

r = quantizer ('fixed',[n-1, P0]); % num0 fx form  

q = quantizer ('fixed',[n-1 P1]); % num1 fx form 
This step is important to lose some precision in floating 

point numbers and format the numbers in binary format to 

feed VHDL test bench. The numbers are formatted in binary 

fixed point, 1 bit less, making room for exponent bit.  After 

that the numbers are assigned 1 or 0 as MSB for exponent to 

represent Dual fixed point number. The binary fixed point 

numbers are then again converted into floating point 

numbers for mathematical operations in Matlab. The 

addition, subtraction, multiplication and division are then 

carried out on the fixed point formatted floating points and 

the result is again converted into fixed pointy binary number 

along with the exponent bit. The operands and answers (in 

DFX format) for all operations are saved in a text file. The 

overflow occurred in all operations for all operations are 

also registered. The operands are used for test bench in 

VHDL. 

 
Figure 4. Flow chart for operand generation in Matlab. 

 

A test bench for each different module and operation was 

wrote in VHDL using Xilinx Vivados’ software. The test 

bench open and read the text file generated by Matlab for 

each operand and every output was saved in a text file.  In 

each operation (addition, subtraction, multiplication, 

division) two files were saved, an overflow file with the 

DFX overflow signal and the actual result in DFX format. 

After the Vivados’ simulator created the output files we 

used Matlab again. Figure 5 shows the script to compare and 

plot the VHDL and the Matlab results. First the outputs (in 

DFX format) from Matlab and VHDL are read from text 

files. The overflow flags generated during operations in both 

Matlab and VHDL which were also stored in text files are 

extracted. The binary DFX formatted numbers are converted 

into fixed point numbers by first chopping off exponent bits 

and converting binary FX numbers to numerical floating 

points using quantizers. The exponent bit is used for 

determining the number is num0 or num1 configuration. 

According to that, numbers are converted. Using Overflow 

information, the numbers which have overflow registered 

are forced to zero as there is no relation between those 

values in Matlab output and VHDL output. The generated 

floating points with zeroed out overflow values are later on 

plotted for picturing the performance of both models and 

test the output of VHDL. 



 
Figure 5. Flow chart of the comparison program in Matlab. 

We expected that the results from VHDL and Matlab to be 

the same or very similar. In addition, the number of 

overflows was expected to be the same and in for the same 

operations in both the VHDL and Matlab results.The two set 

of parameters that we used to test the three cores were: [8 5 

3] and [16 10 7]. 

 

A part from the Matlab/VHDL test bench we also set up a 

hardware implementation using the Digilent’s ZYBO board 

which integrated an ARM A9 microcontroller connected to 

the AXI bus. We created a calculator which was composed 

by the two sets of adder/subtractor, multiplier and divisor. 

The first was in the [8 5 3] configuration and the second was 

in [16 10 7]. The input and outputs were map to 15 32-bits 

registers which later were connected to the AXI Lite as a 

slave core. After that, we wrote a small code to test the first 

set of adder/subtractor, multiplier and divisor. We 

programmed the FPGA with the bitstream of the project 

including the configuration of the Zynq. Afterwards we 

programmed the compiled software using the UART 

interface. Figure 6 shows the high level architecture of DFX 

calculator using my_dfx_alu core connected to the AXI Lite 

bus. 

 
Figure 6. SoC with the DFX ALU connected to the AXI Lite bus. 

IV. RESULTS 

As stated before, when comparing the output files for the 

addition, subtraction, multiplication and division of the 

VHDL output and the Matlab output the first analysis was 

done in the overflow vectors. In all the cases presented in 

this document that overflow from VHDLresult and Matlab 

match. The core design doesn’t take in consideration the 

underflow this cause some mismatch but was adjusted to 

only show numbers bigger in absolute value than the biggest 

num1. Once the number of overflow match and in the same 

points we plotted the values for the 100 pair of operands 

minus the overflow operands, due to the fact that we were 

interested just in the numbers that could be represented 

innum0 or num1 for each set of parameters.  Figure 7, 

shows the DFX analysis. In red color the result from Matlab 

is shown and the black dots are the outputs from the VHDL 

using the format [8 5 3]. As can be seen they are the same or 

very similar there is some difference in num1 for sample 9 

and 20. 

 
Figure 7. DFX addition analysis for [8 5 3]. 

 

Figure 8 shows the DFX subtraction analysis for the [8 5 3]. 

Similarly as the addition there are some points that are not 

in the same spot this is because the in num1 we lose 

precision while in Matlab the result is more accurate. 

 
Figure 8. DFX subtraction analysis  for [8 5 3]. 

 

Figure 9 shows DFX multiplication analysis for [8 5 3]. The 

results match  and in some cases there is some difference 

mostly in the num1 results. We have less results due to the 

fact that is very easy to generate overflow. 

 
Figure 9. DFX multiplication analysis  for [8 5 3] 

 



Figure 10 shows DFX division analysis for [8 5 3]. From the 

plot we can see that all the outputs are very close to the right 

value. However, there is error in the results compare with 

Matlab. 

 
Figure 10. DFX division analysis for [8 5 3] 

 

Figure 11 shows DFX addition analysis for [16 10 7]. From 

the plot we can see that most of the values match very close 

to the correct, Matlab values. Comparing with figure 6, we 

reduce the error in num1 due to the usage of more bits. 

 
Figure 11. DFX addition analysis for [16 10 7] 

 

Figure 12 shows DFX subtraction analysis for [16 10 7]. 

The black dots show a value very similar than the Matlab 

output. Comparing this result with the result from figure 8 

we can appreciate that there a better improvemnet in 

accuracy for large values while at the same time num0 are 

accurately plotted. 

 

 
Figure 12. DFX subtraction analysis for [16 10 7] 

 

Figure 13 shows the DFX multiplication analysis for [16 10 

7]. Most of the values match the Matlab output with high 

precision. We can see that out num1 range is much bigger 

too. 
 

 
Figure 13. DFX multiplication analysis for [16 10 7]. 

 

Figure 14 shows the DFX division analysis for [16 10 7]. 

We can see that all the values match correctly the Matlab 

ouput. Most of the results are num0 but there are some 

num1 as well. 

 

 
Figure 14 DFX division analysis for [16 10 7]. 

From the results of [8 5 3] previously shown we calculate 

the relative error. For addition the error was -0.0529, for 

subtraction the error was 1.303. In the case of multiplication 

the error was 0.0198 and for division the error was -

2.91*10-4. 

Table 1 shows the hardware resources that would be 

necessary to implement each of the modules in each of the 

four configurations. As it was expected the DFX multiplier 

and the DFX divider use much more resources than the 

adder/subtractor and with an increase in the number of bits 

more hardware resources are needed. 

 
Table 1. Resources utilization for different configuration (in LUT) 
 [8 5 3] [16 10 7] [24 15 10] [32 20 15] 

DFX 

Adder/Sub 

31 64 76 101 

DFX 
Multiplier 

73 187 302 353 

DFX 

Divider 

84 190 346 443 

 

We also calculate the timing to get the correct answer for 

each of the modules in terms on clock cycles. As previously 

mention the adder/subtractor is a combinational circuit but 

it’s a good practice to register the signal at the input and at 

the output for this reason the number of clock cycles 

required to get an answer from the input is 2 clock cycles. 

This result is not affected if we synthetized the circuit with a 

different format for the DFX numbers. In the case of the [8 

5 3] multiplier the number of clocks required was 8 and for 

the divisor in the same format the number of clock is 16. 

Figure 15 shows the implementation result of the DFX 



calculator in the ZYBO board. As it can be seen the output 

that we got in SDK terminal as the output expected of each 

of the operands pairs in each of the four operations. 

 

 
Figure 15. Result from the implementation of the DFX calculator 

 

 

CONCLUSIONS 

In this work we successfully designed, verified and 

implemented three hardware cores to perfume the four basic 

arithmetic operations: addition, subtraction, multiplication 

and division in DFX arithmetic. We used more than 200 

pair of operands to properly verified our designed in two 

different configuration [8 5 3] and [16 10 7]. 

We showed how DFX can archived high precision and a 

bigger dynamic range with a small number of bits. We also 

demonstrated that our implementation of those three DFX 

cores used a small number of hardware resources. 

Moreover, in this work we show how a generic architecture 

can be used to represent different ranges of numbers and 

also how taking a given format for the DFX can yield to a 

highly accurate calculation but at the same time taking a 

another format can allow us to represent bigger numbers 

with less precision. In addition, we show how an increase in 

bit for different format utilized more resources in each of 

the three cores. In the case of the multiplier and division the 

underflow as not taken in consideration. I would be a good 

idea to assert the overflow signal or use a separate 

underflow signal. In the case of the divider it would be 

important to analyze the influence of the precision bits. As 

what’s the point in which there is no more precision gain 

and the tradeoff it can leads in terms of timing and hardware 

resources. Further testing is also highly advised. 
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