ECE495 Final Project (Fall 2015)

Floating Point CORDIC Based Power Operation

Kazumi Malhan Padmaja AVL

OUTLINE

- Floating Point Format
- Extended Hyperbolic CORDIC
- Power Operation
- Interface with FIFO
- Implementation of System
- SD Card
- Test Result
- Timing Issue
- Demonstration
- Q & A

SUPPORTED FLOATING POINT FORMAT

sign	bit	biased exponent	significand					
	ŧ	e+bias	f					
		<>	<>					
		E	P					

Some of the components supports 16 bit and 24 bit FP format, but not officially supported.

Zero, infinite, Not a Number is supported and follows similar to IEEE-754 Standard.

Note: Deformalized numbers are not supported.

	32 bit (Single)	64 bit (Double)
Ordinary Number	-	-
Min	2 ⁻¹²⁶	2-1022
Max	(2-2 ⁻²³)×2 ¹²⁷	(2-2 ⁻⁵²) ×2 ¹⁰²³
Exponent bits E	8	11
Range of e	[-126, 127]	[-1022, 1023]
Bias	127	1023
Dynamic Range (dB)	759 dB	6153 dB
Significand range	$[1, 2-2^{-23}]$	[1, 2-2 ⁻⁵²]
Significand bits (p)	23	52

EXPANDED HYPERBOLIC CORDIC

For i < 0

$$i \le 0: \begin{cases} x_{i+1} = x_i + \delta_i y_i (1 - 2^{i-2}) \\ y_{i+1} = y_i + \delta_i x_i (1 - 2^{i-2}) \\ z_{i+1} = z_i - \delta_i \theta_i, \theta_i = Tanh^{-1}(1 - 2^{i-2}) \end{cases}$$

M = 5 is chosen, -2 operation was done inside FSM counter. (counted from -7 to -2)

For i > 0

 $i > 0: \begin{cases} x_{i+1} = x_i + \delta_i y_i 2^{-i} \\ y_{i+1} = y_i + \delta_i x_i 2^{-i} \\ z_{i+1} = z_i - \delta_i \theta_i, \theta_i = Tanh^{-1}(2^{-i}) \end{cases}$

N = 16. Inside FSM counter, included the code to generate indication when i = 4,13. FSM controlled the enable single to the counter to repeat iteration. Register is used to confirm two iteration is occurred.

i = 4, and 13 were repeated.

Delta

Rotation: $\delta_i = -1$ if $z_i < 0$; +1, otherwise Vectoring: $\delta_i = -1$ if $x_i y_i \ge 0$; +1, otherwise For vectoring mode, checked if x(i) and y(i) have same bit. If it is same, => positive.

General output

 $\begin{aligned} & \text{Rotation:} \begin{cases} x_n = A_n (x_0 \cosh z_0 + y_0 \sinh z_0) \\ y_n = A_n (x_0 \cosh z_0 + y_0 \sinh z_0) \\ z_n = 0 \end{cases} \\ & \text{Vectoring:} \begin{cases} x_n = A_n \sqrt{x_0^2 - y_0^2} \\ y_n = 0 \\ z_n = z_0 + \tanh^{-1} (y_0 / x_0) \end{cases} \\ & A_n = \left(\prod_{i=-M}^0 \sqrt{1 - (1 - 2^{i-2})^2} \right) \prod_{i=1}^N \sqrt{1 - 2^{-2i}} \end{aligned}$

□ An = 5.0382×10^{-4} M = 5, N = 16

• Vector mode: $ln(x)/2 = tanh^{-1}(x-1/x+1)$

Rotation mode: e^x = cosh(x) + sinh(x)

How to calculate x^y

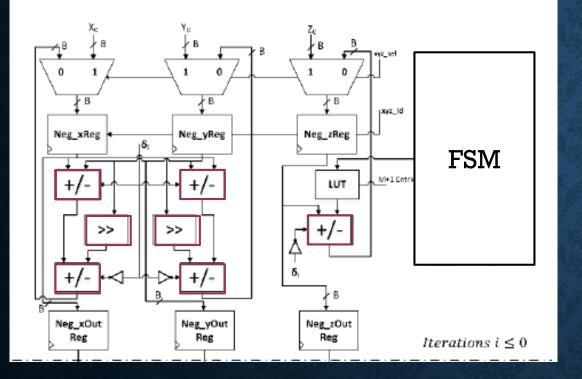
1) Using vectoring mode, provide $x_0 = x + 1$, $y_0 = x - 1$, $z_0 = 0$.

2) You get Zn = ln(x)/2

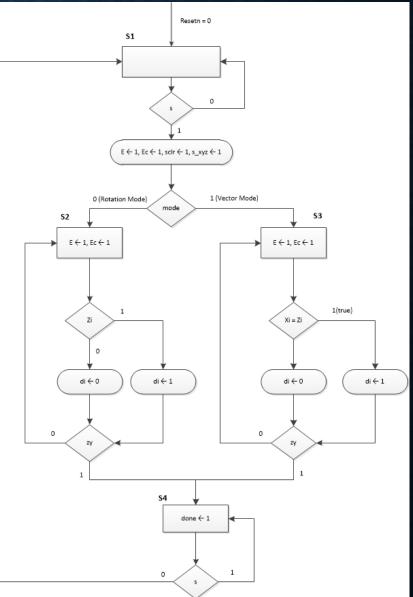
3) Multiply ln(x)/2 and 2. (Performed by bit shifting)

4) Multiply ln(x) and y.

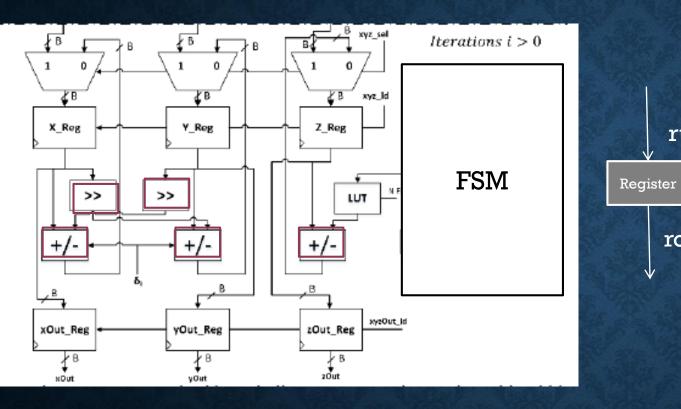
5) Using rotation mode, provide $x_0 = y_0 = 1/An$, $z_0 = ln(x)*y$.

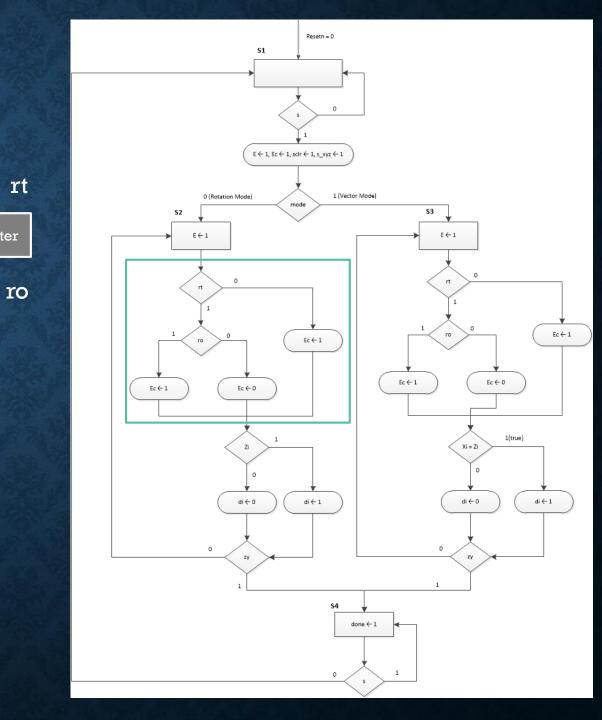

6) You get $Xn = e^{y \ln x} = x^y$

Parameter to CORDIC


N = total number of bits EXP = exponent bits FR = fractional bits CORDIC is coded as parametrized to support any FP format. Just need to modify LUTs and some constant definitions

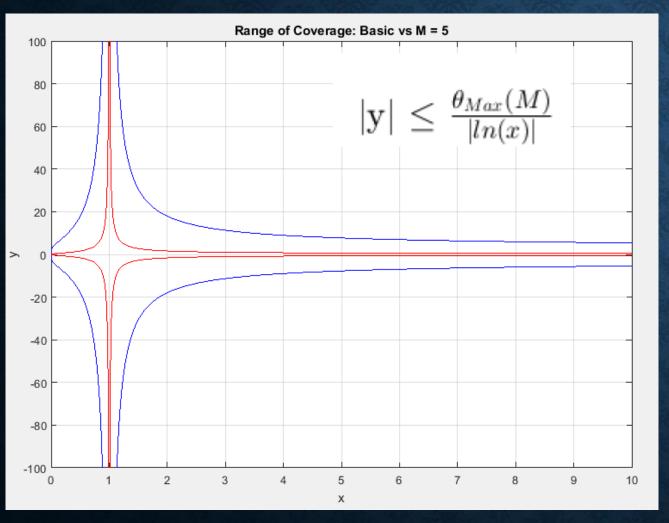
EXPANDED HYPERBOLIC CORDIC IMPLEMENTATION

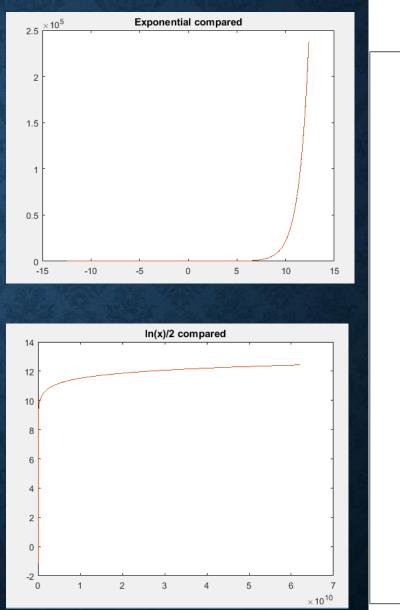

For I < 0 iteration

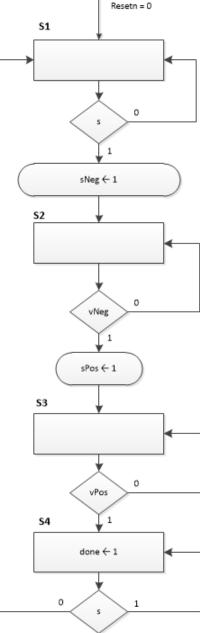


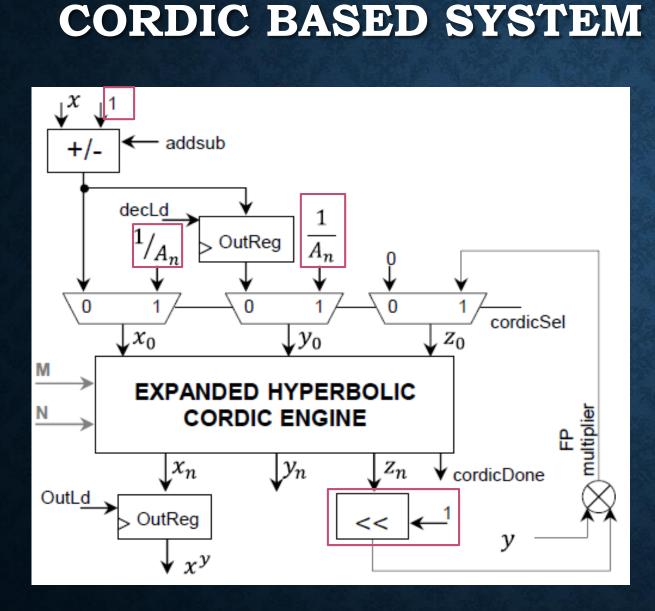
LUT uses "if (N = ?) generate" statement to output appropriate FP formatted numbers

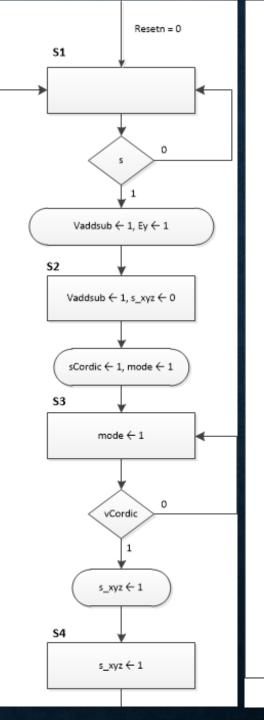
For I > 0 iteration

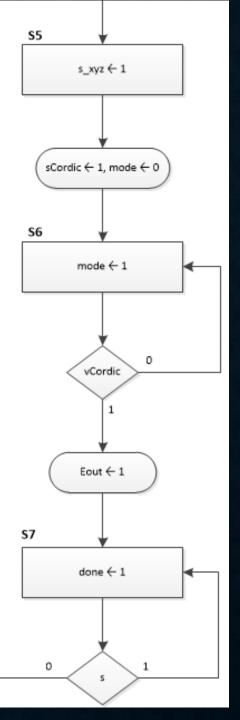


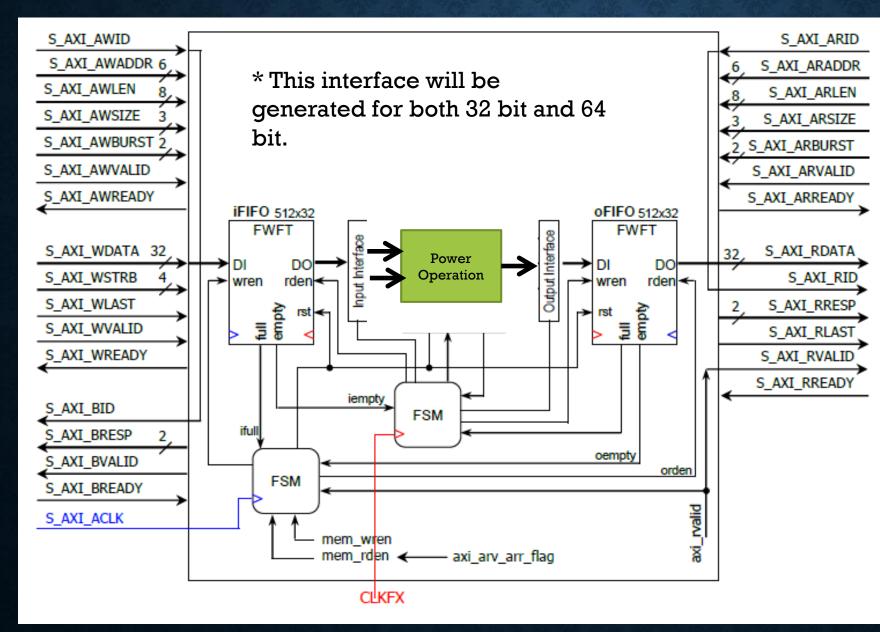



SIMULATION

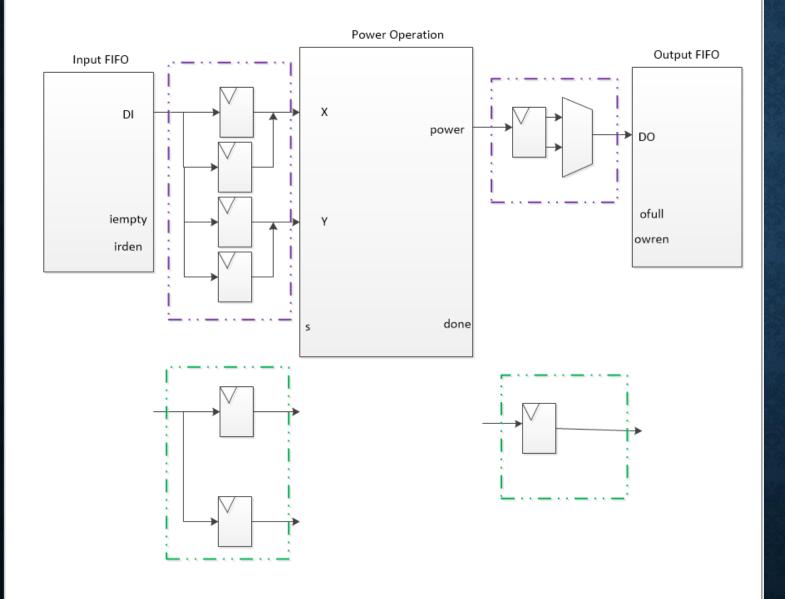

Name	Value		700 ns	5	750) ns		800 ns		850 ns		900 ns		950 ns		1,000 ns		1,050	ns	1,100 ns	1,150 ns		1,200 ns	1,250 ns	1,300 ns
Uk clock	1																								
Ug resetn	1																								
₩ s	1																								
🖟 mode	0																								
🖽 📲 Xin[63:0]	1984.85300966148	19															11.0								
🖪 📲 Yin[63:0]	1984.85300966148	19															9.0								
🖪 📲 Zin[63:0]	2.0	2.0															0.0								
🖽 📲 Xout[63:0]	3.56361235680561	3.563	. (11	.0) 2	. 0.														0.003848	370916604996					
🖽 📲 Yout[63:0]	3.56361235680561	3.563	. 9.	0 -1	0.		0 / 0.												0.000257	901847362518					
🖽 📲 Zout[63:0]	0.915817983673441	0.915	. (0.	.0) 2	. 0.		(0.												1.0841	8201632656					
🖽 📲 Xin[63:0]	3.56361235680561	3.563		.0/2	. (0.				χ										0.003848	370916604996					
🖬 📲 Yin[63:0]	3.56361235680561	3.563		0 -1	. (0.		0 (0.	/ -0	χ										0.000257	901847362518					
🖬 📲 Zin[63:0]	0.915817983673441	0.915		0 2	. (0.				χ										1.0841	8201632656					
🖪 📲 Xout[63:0]	7.37455509649401			7.3	374555	509649	9401			0 (0	X 0.			0)	0 0.		0	0	0 0		0 0.			0.003180180350	81084
🖽 📲 Yout[63:0]	7.37455509649401			7.3	374555	509649	9401			0	0 / -0	0)(-0		7)	-2 2.		(-1)	-4	-1 3		3 1.			3.542116673775	28e-08
🖽 📲 Zout[63:0]	7.46849818055726e-06			7.468	349818	805572	26e-06			1 1				1	1		(1)	1	1		1 1.			1.1512814083	9703
🖟 done	1																								
Va st	S4	Sl				S	\$2									S	3						_X	S4	٤ 🔍
₩ast	S1	Sl				S 3			X 54											S1					
Ug it	5		5	4	3	3 2	2 1	. 0												5					
U) st	S1				5	S1										S 3						S	4	S1	
Ug it	1					1					2 (3		4	<u>(</u> 5)(6 (7		9	10	11	12 / 13	14 1	5		1	


RANGE OF COVERAGE





SIMULATION

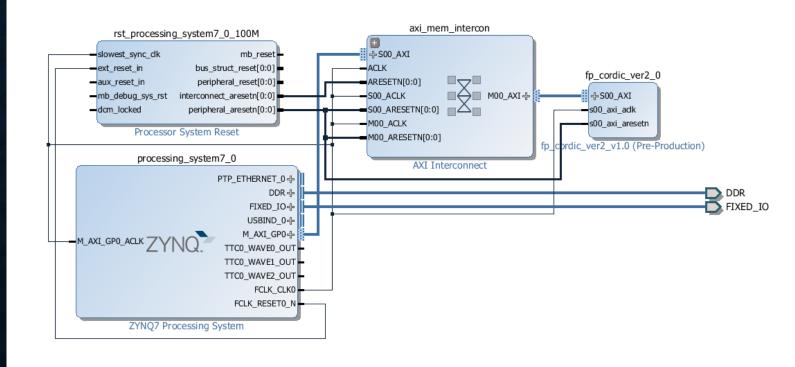

Name	Value	0 ns		200 ns	400 ns	600 ns		800 ns	1,000 ns .	1,200 ns
U dock	0		nddddd						nanananan	
1 resetn	1									
₩, s	1									
🖽 📲 X[63:0]	10.0	0.0)					10.0			
🖽 📲 Y[63:0]	2.0	0.0 X					2.0			
🖽 📲 Xin[63:0]	11.0	0.0		11.0	Х	198)			11.0	
🖽 📲 Yin[63:0]	9.0	0.0	Χ	9.0	X	198)			9.0	
🖽 📲 Zin[63:0]	0.0			0.0	X	4.6			0.0	
🖽 📲 Xout[63:0]	99.8011317113595		0.0			003180180	35081084)	9.8011317113595
🖽 📲 Yout[63:0]	99.8011317113595		0.0			5421166737	7528e-08 🗙)	9.8011317113595
🖽 📲 Zout[63:0]	-1.08464529111708e		0.0			1.15128140	839703 X)	8464529111708e-05
🖽 📲 power[63:0]	99.8011317113595				0.0				X_	99.8011317113595
🕼 done	1									
₩ st	S7	S1	XX	S3				S6	X	\$7
Va st	S1	S1	X 52		<u>s</u> 3 X		S2 X	\$3	XX_	S1
Ug it	5	5	4/2/1/	ф) <u>(</u>	5	4	2 1 0		5	
Ua st	S1	S1	83		Sl		S2		S1	
Ug it	1		1	2/3/4/5/6/7/	\$___ <u>13_\</u> _	1		234)5678)	1
Va st	S1		Sl	٤ ٢	3 ()	S1	. Х	S2	XX	S1

AXI4-FULL INTERFACE

AXI4-Full interface was chosen as large amount of input (x,y) goes to input FIFO from SD card.

INTERFACE WITH FIFO

Depending on N = 64 bit or 32 bit, Separate circuit is created in-between FIFOs and Power block.


64 bit = Purple 32 bit = Green

Separate FSM controls the input interface and output interface.

Also, different FSM for 32 bit and 64 bit.

Every input has register to ensure the correct input because power block takes reads "y" after first cordic is done.

IMPLEMENTATION

Resource Usage

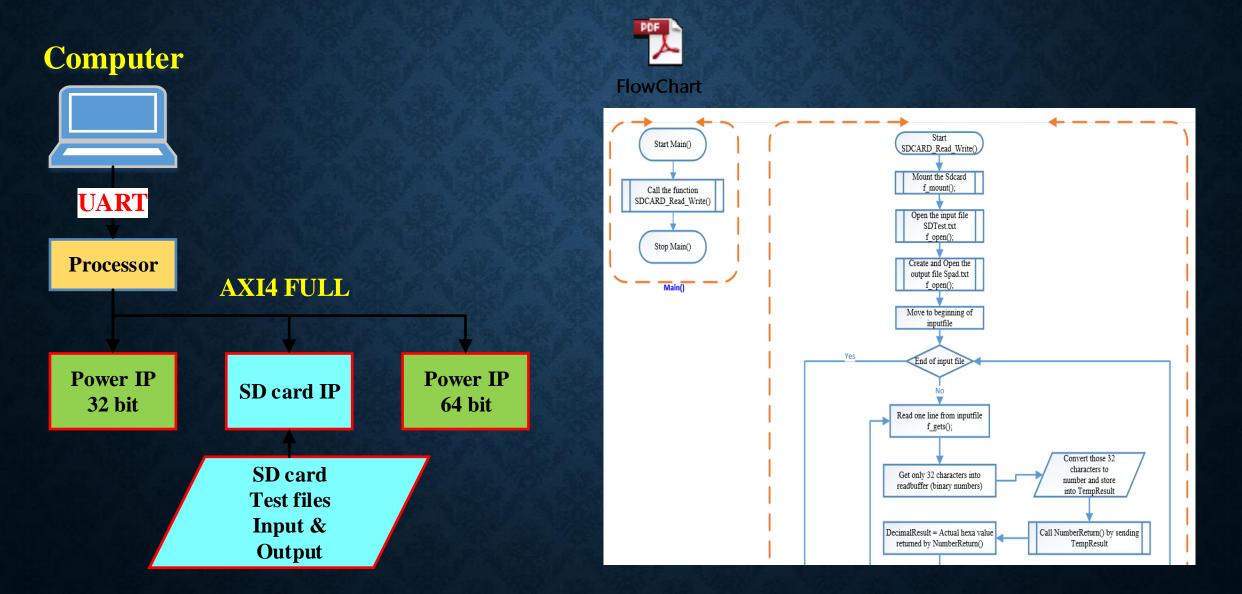
64 Bit: LUT => 9464 (18%) FF => 895

32 Bit: LUT => 4378 (8%) FF => 502

SD CARD INTERFACE

- Uses the Xsdps libraries at driver level.
- This driver is used to initialize read from and write to the SD card.
- Data transfer: The SD card is put in transfer state to read from or write to it and works in polled mode using ADMA2. The default block size is 512 bytes.
- File system: The xilffs library is used to read/write files to SD.
- Application file and functions are completely developed independently and it supports read from a file in SD card repeatedly until end of the file and after manipulating the data, write back into SD card file in another format.

Independently developed in C
Uses FatFs API to interact


• FatFs API - f_open, f_close, f_read, f_write, Directory access, File Management etc.

FatFs Module • Uses Xilffs library API.

Storage device controls • DISK I/O - disk_status, disk_read etc.

• Uses Xsdsp driver APIs -XSdPs_SdCardInitialize, XSdPs_ReadPolled

CONTROL LOGIC

TEST RESULTS – 32 BIT

32 bit Input

😑 32bit F	PHexTested10.txt 🗵	 😑 32Bit Fl	PInputTested.txt 🗵	
1	0x41200000	1	010000100100000000000000000000000000000	
2	0x40000000	2	010000000000000000000000000000000000000	
3	0x41300000	3	010000010011000000000000000000000000	
4	0x40000000	4	010000000000000000000000000000000000000	
5	0x41400000	5	010000010100000000000000000000000000000	
6	0x40000000	6	010000000000000000000000000000000000000	8
7	0x41500000	7	010000010101000000000000000000000000000	
8	0x40000000	8	010000000000000000000000000000000000000	
9	0x41600000	9	01000001011000000000000000000000000	
10	0x40000000	10	010000000000000000000000000000000000000	
11	0x41700000	11	01000001011100000000000000000000000	
12	0x40000000	12	010000000000000000000000000000000000000	
13	0x41800000	13	010000011000000000000000000000000000000	
14	0x40000000	14	010000000000000000000000000000000000000	
15	0x41880000	15	010000011000100000000000000000000000000	
16	0x40000000	16	010000000000000000000000000000000000000	2
17	0x41900000	17	010000011001000000000000000000000000000	
18	0x40000000	18	010000000000000000000000000000000000000	
19	0x41980000	 19	010000011001100000000000000000000000000	
20	0x40000000	20	010000000000000000000000000000000000000	

32 bit Output: Expected vs Actual

32bit FF	HexExpectedOut.txt 🗵	•	😑 32Bit FF	POutput Tested. TXT 🗵
1	0x42c80000		1	0x42C79A2F
2	0x42f20000		2	0x42F18C9F
3	0x43100000		3	0x430FB58B
4	0x43290000		4	0x4328AE41
5	0x43440000		5	0x4343A2AD
6	0x43610000		6	0x43609493
7	0x43800000		7	0x437F8209
8	0x43908000		8	0x43903CDC
9	0x43a20000		9	0x43A1A9CA
10	0x43b48000		10	0x43B422BA
		2.5		

Input -> 1^{st} value 10 in 32-bit IEEE 754 format is 0x 41200000 2^{nd} value 2 in 32-bit IEEE 754 format is 0x40000000 Output -> expected value is 100 in 32-bit IEEE 754 format is 0x 42c800000 Actual value is 99.8 in 32-bit IEEE 754 format is 0x42c79A2F

TEST RESULTS – 64 BIT

64 bit Input

😑 64bit F	PHexTested10.txt 🗵	1	😑 64Bit F	PInputTested.txt 🗵
1	0x40240000		1	010000000100100000000000000000000000000
2	0x00000000		2	000000000000000000000000000000000000000
3	0x40000000		3	010000000000000000000000000000000000000
4	0x0000000x0		4	000000000000000000000000000000000000000
5	0x40260000		5	01000000010011000000000000000000
6	0x0000000x0		6	000000000000000000000000000000000000000
7	0x40000000		7	010000000000000000000000000000000000000
8	0x0000000x0		8	000000000000000000000000000000000000000
9	0x41280000		9	010000000101000000000000000000000000000
10	0x00000000		10	000000000000000000000000000000000000000
11	0x40000000		11	010000000000000000000000000000000000000
12	0x00000000		12	000000000000000000000000000000000000000
13	0x402A0000		13	010000000101010000000000000000000000000
14	0x00000000		14	000000000000000000000000000000000000000
15	0x40000000		15	010000000000000000000000000000000000000
16	0x00000000		16	000000000000000000000000000000000000000
17	0x402C0000		17	010000000101100000000000000000000
18	0x00000000		18	000000000000000000000000000000000000000
19	0x40000000		19	010000000000000000000000000000000000000
20	0x00000000	11111	20	000000000000000000000000000000000000000

Input -> 1^{st} and 2^{nd} value 10 in 64-bit IEEE 754 format is 0x 40240000 00000000 3^{rd} and 4^{th} value 2 in 64-bit IEEE 754 format is 0x40000000 00000000

64 bit Output: Expected vs Actual

😑 64bit Ff	HexExpectedOut.txt 🗵	4	😑 64Bit Fi	POutput Tested. TXT 🗵
1	0x40590000		1	0x4058F345
2	00000000x0		2	0xBDF104F9
3	0x405E4000		3	0x405E3193
4	0x000000x0		4	0xC58BDA1D
5	0x40620000		5	0x4061F6B1
6	0x000000x0		6	0x5CFCA3D4
7	0x40652000		7	0x406515C7
8	0x000000x0		8	0xD3204E6D
9	0x40688000		9	0x40687455
10	0x000000x0		10	0x249C6D96
11	0x406C2000		11	0x406C1292
12	0x000000x0		12	0x30021010
13	0x40700000		13	0x406FF041
14	0x000000x0		14	0x4369768E
15	0x40721000		15	0x4072079B
16	0x000000x0		16	0x46F2D74C
17	0x40744000		17	0x40743538
18	0x000000x0		18	0xF9BCE448
19	0x40769000		19	0x40768457
20	0x00000000		20	0x54F1EAC4

Output -> expected value is 100 in 64-bit IEEE 754 format is 0x 40590000 00000000 Actual value is 99.8 in 64-bit IEEE 754 format is 0x4058F345 BDF104F9

TIMING ISSUE

During the implementation, Vivado detected "timing violation" error.

- Frequency of AXI bus was originally 100 MHz.
- With help from Professor, reduced the frequency.
- Finally, settled at 10 MHz. (50MHz didn't work)

Root of this problem

- Long combinational logic.
- Specially, negative iteration of CORDIC uses two floating point adder during one clock cycle, propagation delay exceeded to clock frequency.

₽	Re-cust	omize IP		×						
ZYNQ7 Processing System (5.5)										
🍘 Documentation 🆚 Presets 늡 IP Location 🎕 Import XPS Settings										
Page Navigator «	Clock Configuration			Summary Report						
Zynq Block Design	Basic Clocking Advanced Clocking]								
PS-PL Configuration	Finput Frequency (MHz) 33.33333	CPU Cl	ock Ratio 6:2:1	-						
Peripheral I/O Pins	Search: Q-									
MIO Configuration	🚔 Component	Clock Source	Requested Frequen	Actual Frequenc						
Clock Configuration	Processor/Memory Clocks O Peripheral Clocks PL Fabric Clocks									
DDR Configuration		IO PLL 🔻	10	10.000000						
SMC Timing Calculat		IO PLL	150.000000	142.857132						
Interrupts		IO PLL	50	50.000000						
	FCLK_CLK3	IO PLL	50	50.000000						
	System Debug Clocks									
	. Timers									
	<			> 🗆						
			ОК	Cancel						

Timing	
Worst Negative Slack (WNS):	-40.362 ns
Total Negative Slack (TNS):	-6625.593 ns
Number of Failing Endpoints:	276
Total Number of Endpoints:	1400
Implemented Timing Report	
Setup Hold Pulse Width	

DEMONSTRATION

THANK YOU VERY MUCH

Any Questions?