
Floating Point CORDIC
Based Power Operation

Kazumi Malhan

Padmaja AVL

ECE495 Final Project (Fall 2015)

OUTLINE

• Floating Point Format

• Extended Hyperbolic CORDIC

• Power Operation

• Interface with FIFO

• Implementation of System

• SD Card

• Test Result

• Timing Issue

• Demonstration

• Q & A

SUPPORTED FLOATING POINT FORMAT

32 bit (Single) 64 bit (Double)

Ordinary Number - -

Min 2-126 2-1022

Max (2-2-23)×2127 (2-2-52) ×21023

Exponent bits E 8 11

Range of e [-126, 127] [-1022, 1023]

Bias 127 1023

Dynamic Range (dB) 759 dB 6153 dB

Significand range [1, 2-2-23] [1, 2-2-52]

Significand bits (p) 23 52
Note: Deformalized

numbers are not

supported.

Zero, infinite, Not a

Number is supported

and follows similar to

IEEE-754 Standard.

Some of the

components supports

16 bit and 24 bit FP

format, but not

officially supported.

EXPANDED HYPERBOLIC CORDIC
For i < 0

M = 5 is chosen, -2 operation was done inside FSM

counter. (counted from -7 to -2)

For i > 0

i = 4, and 13 were repeated.

N = 16. Inside FSM counter, included the code to generate indication

when i = 4,13. FSM controlled the enable single to the counter to

repeat iteration. Register is used to confirm two iteration is occurred.

Delta

For vectoring mode, checked if x(i) and y(i) have same bit. If it is

same, => positive.

General output

 An = 5.0382×10-4

M = 5, N = 16

 Vector mode:

ln(x)/2 = tanh-1(x-1/x+1)

 Rotation mode:

ex = cosh(x) + sinh(x)

How to calculate xy

1) Using vectoring mode, provide x0 = x + 1, y0 = x – 1, z0 = 0.

2) You get Zn = ln(x)/2

3) Multiply ln(x)/2 and 2. (Performed by bit shifting)

4) Multiply ln(x) and y.

5) Using rotation mode, provide x0 = y0 = 1/An, z0 = ln(x)*y.

6) You get Xn = eylnx = xy

Parameter to CORDIC

N = total number of bits

EXP = exponent bits

FR = fractional bits

CORDIC is coded as parametrized to

support any FP format. Just need to

modify LUTs and some constant

definitions

EXPANDED HYPERBOLIC CORDIC
IMPLEMENTATION

For I < 0 iteration

FSM

LUT uses “if (N = ?) generate” statement to

output appropriate FP formatted numbers

For I > 0 iteration

FSM Register

rt

ro

SIMULATION

Calculator Result: ln(10)/2 = 1.15129

RANGE OF COVERAGE

CORDIC BASED SYSTEM

SIMULATION

AXI4-FULL INTERFACE

Power

Operation

* This interface will be

generated for both 32 bit and 64

bit.

AXI4-Full interface was

chosen as large

amount of input (x,y)

goes to input FIFO

from SD card.

INTERFACE WITH FIFO

Depending on N = 64 bit or 32 bit,

Separate circuit is created in-between

FIFOs and Power block.

64 bit = Purple

32 bit = Green

Separate FSM controls the input

interface and output interface.

Also, different FSM for 32 bit and 64

bit.

Every input has register to ensure

the correct input because power

block takes reads “y” after first

cordic is done.

IMPLEMENTATION

Resource Usage

64 Bit:

LUT => 9464

(18%)

FF => 895

32 Bit:

LUT => 4378

(8%)

FF => 502

SD CARD INTERFACE

• Uses the Xsdps libraries at driver level.

• This driver is used to initialize read from and

write to the SD card.

• Data transfer: The SD card is put in transfer

state to read from or write to it and works in

polled mode using ADMA2. The default

block size is 512 bytes.

• File system: The xilffs library is used to

read/write files to SD.

• Application file and functions are completely

developed independently and it supports

read from a file in SD card repeatedly until

end of the file and after manipulating the

data, write back into SD card file in another

format.

Application
layer

• Independently developed in C

• Uses FatFs API to interact

FatFs Module

• FatFs API - f_open, f_close, f_read,
f_write, Directory access, File
Management etc.

• Uses Xilffs library API.

Storage device
controls

• DISK I/O – disk_status, disk_read etc.

• Uses Xsdsp driver APIs -
XSdPs_SdCardInitialize,
XSdPs_ReadPolled

Processor

Power IP

32 bit
SD card IP

Power IP

64 bit

SD card

Test files

Input &

Output

Computer

UART

AXI4 FULL

CONTROL LOGIC

TEST RESULTS – 32 BIT
32 bit Input 32 bit Output: Expected vs Actual

Input -> 1st value 10 in 32-bit IEEE 754 format is

0x 41200000

2nd value 2 in 32-bit IEEE 754 format is 0x40000000

Output -> expected value is 100 in 32-bit IEEE 754

format is 0x 42c800000

Actual value is 99.8 in 32-bit IEEE 754 format is

0x42c79A2F

TEST RESULTS – 64 BIT

64 bit Input 64 bit Output: Expected vs Actual

Input -> 1st and 2nd value 10 in 64-bit IEEE 754

format is 0x 40240000 00000000

3rd and 4th value 2 in 64-bit IEEE 754 format is

0x40000000 00000000

Output -> expected value is 100 in 64-bit IEEE 754

format is 0x 40590000 00000000

Actual value is 99.8 in 64-bit IEEE 754 format is

0x4058F345 BDF104F9

TIMING ISSUE

During the implementation, Vivado detected

“timing violation” error.

• Frequency of AXI bus was originally 100 MHz.

• With help from Professor, reduced the frequency.

• Finally, settled at 10 MHz. (50MHz didn’t work)

Root of this problem

• Long combinational logic.

• Specially, negative iteration of CORDIC uses two floating point adder

during one clock cycle, propagation delay exceeded to clock

frequency.

DEMONSTRATION

THANK YOU VERY MUCH

Any Questions?

