
CPU Multi Threaded 
Dual-Gradient Projection for 

Embedded MPC

ECE 5772 - High Performance Embedded Programming

Joseph Volcic



Overview of Model Predictive Control (MPC)

● Model Predictive Control is a control strategy for dynamic systems. MPC solves for optimal inputs to a system by 
predicting its future behavior using a mathematical model and determining the best sequence of control actions that 
minimize a cost function while respecting system constraints.



Overview of The QP Problem

Consider the following finite-time optimal control problem formulation for MPC (bottom left). Using quadratic costs, we can 
repackage the optimal control problem on the left as a convex quadratic program (QP) (bottom right)

Cost
Function

Current 
State

Dynamics 
and 
Constraints

Terminal State 
Constraints 
(good for 
stability)

Quadratic Costs



Overview of the GPAD Algorithm

Source: A. Bemporad “Model Predictive Control”

● Normally, solving the QP for MPC is incredibly resource-intensive (active set, interior point methods, explicit 
MPC), and thus unfit for embedded applications. 

● However, in “Simple and Certifiable Quadratic Programming Algorithms for Embedded Linear Model Predictive 
Control” (Bemporad, Patrinos), a dual fast gradient-projection approach (GPAD) is introduced for solving QP 
problems in a lightweight manner, fit for embedded systems, and can be easily executed on “p” parallel 
processors. The four steps are shown below:



MPC Optimization Problem
● This work will focus specifically on 

the battery changing problem. 
However the approach will be 
generalized to any MPC.

■
● In the battery charging case we 

have to abide by a couple rules. 
Current into a cell must equal 
current out of a cell, cell max 
voltage, cell min voltage. These 
are all defined in the M_G and 
G_L matrices.



Proposed Methodology for Optimization

● Partitioning the data into smaller section allows us compute parallel section of 
data.

● Running multiple steps of the algorithm at the same time.

● Matrix Compression reduces the total number of data elements operated on.

● Parallel SAXPY, however the data is too small to see benefit from this.



Optimization Methodology - 
Sparse Matrix-Vector Multiplication 

● Matrix Vector multiplication is very 
similar to completing the dot product 
on multiple rows of data.

■
● To parallelize matrix vector 

multiplication the matrix can be 
partitioned into multiple chunks for 
threads to compute simultaneously.

■
● Built using a Blas framework and 

pthreads. Pthreads allows me to 
calculate how to split the data before 
computation.



Optimization Methodology - Matrix Compression
● Large matrices in step2 

and step 4 can be 
compressed to remove 
zero elements.

○
● The compressed array 

is represented as two 
array to maintain data 
and position.

○
● Padding is applied to 

rows with less elements 
to ensure each row has 
the same number of 
elements. (Important for 
GPU operations)

Non-Compressed Matrix

Compressed Matrix



Proposed Methodology - Parallel Steps

● Recall the GPAD algorithm: 
Upon direct observation, we 
notice that some steps 
further ahead do not depend 
on the results calculated in 
previous steps. 

● We can draw up a directed 
acyclic graph to represent 
tasks can be done in 
parallel, and which need to 
wait for others to be 
completed. 

● This problem cannot be 
pipelined due to each steps 
dependence of completion 
of the previous step.



Results - Testing Methodology

Testing Machines

Jeston Nano Desktop

Cores: 4

Threads: 4

Clock Speed: 1.9 GHz

Cores: 8

Threads: 16

Clock Speed: 3.2 GHz



Results - Parallel Steps Jetson

● Running multiple steps in 
parallel provided a slight 
speed up, however nearly 
negligible.

○
● Two implementations 

were tested. Running 
steps 1 and 2a in parallel 
with steps 3 and 4 in 
parallel. As well as 
running only steps 3 and 4 
in parallel.



Results - Parallel Steps Desktop

● The same tests were 
performed on the desktop, 
and the sequential version out 
performed both parallel 
versions.

■
● The steps the can be run in 

parallel are very small causing 
more overhead then 
computation gain.

■
● Due to the lack of 

performance this was cut in 
future tests.



Results - Sequential Matrix Compression Jetson

● Compressing the 
matrices and then 
performing multiplication 
offered around a 9 times 
speed up on the Jetson.



Results - Parallel Matrix Multiplication Jetson

● Running the matrix vector 
multiplication in parallel lead to a 
significant additional speed up, 
around 2-3 times faster

●
● Testing was done with 4 threads



Results - Sequential Matrix Multiplication Desktop

● Similar to the Jetson 
there was around a 10 
times speed up after 
matrix compression.



Results - Parallel Matrix Multiplication Desktop

● Running the matrix vector 
multiplication in parallel lead to a 
significant additional speed up, 
around 3 - 6 times faster

●
● Testing was done with 8 threads



Conclusions

● CPU multi-threaded acceleration of GPAD demonstrates significant 
performance improvements over traditional a single thread CPU 
implementation.

● Optimizations like matrix compression, data partitioning, are key to achieving 
real-time performance.

● Future work includes improving the parallel steps approach, as well as 
comparing the GPU and CPU multi-threaded results.


