

Eulerian Video Magnification With TBB

Using Multi-core Strategies to Improve the Processing with Eulerian Video Magnification

List of Authors (Grace Szpytman, Cherwa Vang)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: gszpytman2@oakland.edu, cwvang@oakland.edu

Abstract—Eulerian Video Magnification (EVM) is an

algorithm that magnifies subtle changes in color or movement.

The EVM algorithm is computationally heavy, requiring

convolutions, Fourier Transforms, and various math applied to

each video frame. Since EVM is computationally heavy, it is

traditionally run with prerecorded videos. To process a live

video stream, the algorithm needs to run faster than the

camera’s frame rate. To decrease the computation time,

efficient strategies must be applied to video processing to

improve frame rate, decrease frame latency, and provide more

capabilities. This paper aims to improve upon these features by

taking advantage of multi-core embedded systems to divide the

work between multiple cores.

I. INTRODUCTION

The need for video processing and filtering has increased
over the past decades. From phones, to vehicles, home
security, other smart devices, and industrial uses, cameras
are more and more involved in everyday embedded systems.
Raw video footage isn’t useful by itself. Often raw video
footage undergoes various processing and filters to make the
video footage usable in software. For example, sharpening
filters to make the video clearer, and edge detection filters to
recognize geometry. However, video processing and other
filters can be computationally heavy. Some algorithms are so
heavy that it’s not practical to run the algorithm concurrently
with a live video feed. Instead, the algorithm needs to run on
prerecorded video. One way to decrease the computation
time is to improve the processor.

Processors have improved over the years by increasing

the clock frequency, improving the architecture, new
technologies, and increasing the core count. By increasing
the number of cores in a processor and designing software
that takes advantage of a multicore processor, embedded
systems can improve performance. To improve the
performance of video in embedded systems, efficient
strategies must be used to take advantage of multicore
architecture. This paper will implement multiple strategies
using Threaded Building Blocks (TBB) to optimize the video
processing.

Eulerian Video Magnification (EVM) is an algorithm that

magnifies subtle color and movement changes. This paper
will focus on the motion magnification portion of EVM. The

EVM motion magnification algorithm uses convolution
filters, Fourie transforms, and various math to magnify subtle
movements. The algorithm can be summarized with the
following steps:

1. Fetch frame from webcam or video file
2. convert from RGB to LAB color space
3. Spatial decomposition with Gaussian then

Laplacian pyramid
4. Temporal filtering to isolate the motion

magnification
5. Amplify the motion and attenuate everything

else
6. Reconstruct image and convert back from LAB

color space to RGB color space.
7. Push frame to display or save video frame

These filters and image processing algorithms are

computationally heavy. To improve the framerate, and take
advantage of multicore processors, the EVM algorithm will
be split into multiple stages, to run concurrently.

Three Parallelization strategies will be used in this paper:

• 3 stage pipeline. This strategy separates the
calculation process from the fetch and store
processes. The assumption with this strategy is
that the fetch data and store data is a slow
process. This is shown in Figure 1.

FIGURE 1: THREE STAGE PARALLEL PIPELINE

• 5 stage pipeline. This strategy tries to split the
image processing time into 5 even stages. This
will take advantage of processors that have
multiple cores. This is shown in Figure 2.

FIGURE 2: FIVE STAGE PARALLEL PIPELINE

• Parallel Reduce to parallelize the Temporal
filter and amplify stages to process multiple
filters in parallel. Then joining all the images
into one to show the operator. This is shown in
Figure 3.

FIGURE 3: PARALLEL REDUCE MULTI FILTER PROCESS

The scope of the project will be to investigate the best

way to split up the EVM algorithm to produce the fastest
computation time or provide the best information to the
operator.

EVM is useful in many applications such as vibration
monitoring on an assembly line, or heartrate monitoring.
Since EVM can magnify color or motion at various
frequencies. The faster the processing, the higher the
framerate. The frame rate is the same as the sampling rate,
and a higher sampling rate will allow the algorithm to
magnifier higher frequencies. E.g. To magnify a 60 bm heart
rate, the camera will need to run at a frame rate of at least
120 frames per second or at a sampling rate of 120 Hz.

II. METHODOLOGY

As stated in the introduction and from Figure 1, the EVM
algorithm consists of 7 stages. The first and last stages are
image store and fetch stages and are not involved in the
EVM algorithm. The middle five stages describe how the
EVM algorithm works:

1. Convert from RGB to LAB color space
2. Spatial decomposition
3. Temporal filtering
4. Amplification and attenuation
5. Image reconstruction, color space conversion

A. Converting form RGB to LAB color space

Camera sensors and digital displays use the RGB color

space to capture and display images. RGB stands for red

blue and green values. The RGB color space stores the

intensity of each color of each pixel to represent an image.

RGB is good for digitally representing an image, however,

LAB or YIQ color space more accurately represents how

real eyes see color. LAB is a color space standard defined

by the international Commission on Illumination (CIE).

LAB stands for perceptual lightness, red-green perception,

and blue-yellow perception [2]. LAB color space allows the

image processing algorithm to manipulate the color values

without affecting the brightness of the image. Figure 4

shows two images of a Rubik’s cube, one image taken

outdoors, and one outdoors [3]. The colors are separated to

their RGB values. Notice how the color values differ

between the two lighting conditions.

FIGURE 4: RGB COLOR SPACE AT DIFFERENT BRIGHTNESS

Figure 5 shows the same Rubik’s cube in LAB color

space. Notice that the Lightness value changes between the

two lighting environments, but the A and B components are

relatively the same. The color conversion is done using built

in functions in Open Computer Vision (Open CV).

 FIGURE 5: LAB COLOR SPACE AT DIFFERENT BRIGHTNESS

B. Spatial Decomposition

The purpose of spatial decomposition is to apply a filter

that detects the edges of an image. The spatial

decomposition starts by creating a Gaussian Pyramid. A

Gaussian pyramid is created by applying a 5x5 gaussian

filter to the image shown in Figure 6. The 5x5 Gaussian

filter is a low pass filter that preserves low spatial

frequencies.

FIGURE 6: 5X5 GAUSSIAN FILTER

Next the image is down sampled by 2 to create the

second layer of the pyramid. This process repeats for as

many layers as desired. This is shown in Figure 7.

FIGURE 7: GAUSSIAN PYRAMID.

Once the Gaussian Pyramid is built, it is turned into a

Laplacian Pyramid to detect edges. A Laplacian Pyramid is

done by getting the difference between two adjacent

Gaussian levels. This is done by taking the higher level,

lower resolution images of the Gaussian Pyramid, and up

sampling them. Then the difference between the up sampled

image and the previous level is used to create a new

pyramid. This is shown in Figure 8.

FIGURE 8: LAPLACIAN PYRAMID

C. Temporal Filtering

The purpose of Temporal Filtering is to keep the desired

frequencies and filter out the undesired frequencies. Like the

name suggests, the Temporal filter filters in time. In other

words, the current frame relies on the previous frame to

determine if the changes between those two frames happen

within the desired frequency. The temporal filter is a first

order Butterworth filter. First order is used over higher

orders since motion magnification is not as uniform as color

magnification. So, a filter that is tolerant to frequencies

slightly outside the desired frequency is desirable. An

example Butterworth filter is shown in Figure 9.

FIGURE 9: BUTTERWORTH FILTER

The Butterworth Filter equation is shown in Figure 10.

The variables in Figure 10 are:

• y[n]: nth filtered image output of the current

frame

• x[n]: nth Laplacian image output

• a0/a1: feedback coefficient

• b0/b1: feedforward coefficient

FIGURE 10: BUTTERWORTH FILTER

D. Amplification and Attenuation

After the image is filtered, the filtered frequencies are

amplified. The amplification is done per pixel with the

following equation shown in Figure 11. The variables in

Figure 11 are:

• MFp[L]: Lth amplified output image of the

current frame

• Fp : Current filtered pyramid from previous

stage

• A: Attenuation Factor

• L: pyramid level

• λ : llamda, special wavelength

• δ : delta, displacement factor

• αnew : alpha, amplify level

• YIQ is another color format very similar to

LAB

FIGURE 11: AMPLIFICATION EQUATION

As shown in Eq 1 in Figure 11, the Y and I/Q

component of the image are amplified differently. The I/Q

component may be attenuated by the variable A. This

amplification is done at each level of the pyramid, except

for the first and last levels.

E. Image Reconstruction & Color Space Conversion

Then each image in the Laplacian pyramid is combined

by up sampling the higher levels images then adding them

to the lower level images. This is repeated until the bottom

and final layer is added. This is shown in Figure 12.

FIGURE 12: ADDING LAPLACIAN PYRAMID AFTER

AMPLIFICATION AND ATTENUATION

After the image is rebuilt to the final level, the image is

converted from LAB space back to RGB, and pushed to a

video output, or saved to a file.

III. EXPERIMENTAL SETUP

This experiment used a high-performance laptop with a

base processing speed of 1.9 GHz and included 8 cores and
16 logical processors as seen in Figure 13. The laptop was
equipped with Ubuntu 24.04 which included libraries for
multi-threading and TBB usage. This configuration was
selected to best implement parallelization strategies.

FIGURE 13: PROCESSOR HW USED IN TESTING

As mentioned in the introduction, three parallelization

strategies were utilized. A three stage TBB parallel pipeline
was used to separate the calculations from the fetch and
store process. Due to the temporal filter relying on previous
frames, the parallel mode of the pipeline caused the code to
hang and then a segment fault would be thrown. To rectify
this the serial_in_order mode was used which allowed the
incoming data to be calculated in order. The second strategy
was a five-stage pipeline that would further break up the
calculation stage into three stages. The image processing
portion was separated into its individual calculations, the
spatial decomposition, temporal filter, and image
amplification. Due to the time and level of difficulty of the
application a different approach was used. The final strategy
implemented TBB parallel reduce, which parallelizes the
temporal filter and amplify stages, to process multiple filters
simultaneously before combining the results into a single
image for the operator shown in Figure 3. However, due to
parallel reduce class taking time to instantiate, the image
processing took too long for the strategy to be practical for
this application.

IV. RESULTS

After running each parallel implementation, they were
compared against the sequential implementation. Figure 14
shows the average per frame calculation of the sequential run
between two different image sizes.

Trial Frame (ms)
Trial1 19.92
Trial2 14.94
Trial3 19.92
Trial4 17.94
Trial5 16.95
Average 17.93

Sequential (640x480)

Trial Frame (ms)
Trial1 913

Trial2 907

Trial3 925

Trial4 903

Trial5 896

Average 908.8

Sequential (2280x3840)

FIGURE 14: AVERAGE RUN TIME FOR SEQUENTIAL PROCESS

Figure 15 shows the average per frame calculation of the

three pipeline run with two different image sizes.

Trial Get (us) Calc (ms) Set (ms) Total (ms)
Trial1 176 6.7 33.53 40.41
Trial2 132 6.88 34.2 41.21
Trial3 196 6.87 34.7 41.77
Trial4 186 6.91 35.5 42.60
Trial5 152 6.58 33 39.73
Average 168.4 6.788 34.185 41.14

Trial Get (us) Calc (ms) Set (ms) Total (ms)
Trial1 4.5 1050 10.1 1060.10
Trial2 4.2 1045 9.8 1054.80
Trial3 4.6 980 11.6 991.60
Trial4 3.9 955 9.9 964.90
Trial5 4.4 1011 10.4 1021.40
Average 4.32 1008.2 10.36 1018.56

3 Stage Pipeline (640x480)

3 Stage Pipeline (2280x3840)

FIGURE 15: AVERAGE RUN TIME FOR 3 STAGE PIPELINE

Looking at the results between the two lower resolution

640x480 images, the calculation times for the sequential

operation is almost twice as fast as the 3 stage pipeline

implementation (17.93 ms vs 41.14 ms). This is likely due

to the overhead cost of creating the TBB Parallel Pipeline.

However, when image size increases, the results are closer.

When using the larger resolution 2280 x 3840 images, the

sequential operation on average is only about 100 ms faster

than the parallel process (908.8 ms vs 1018.56 ms).

One surprising result is how quickly the Get and Set

stages are so fast. One of the assumptions made was that the

process of fetching and storing each frame was slow relative

to the calculation speeds. In certain cases this may be true,

however, for our setup getting and setting data is fast.

Since the get and set are so fast, some of the calculations

can be pushed to those stages. This 5 stage pipeline is

shown in Figure 2. However, due to time constraints, the 5

stage pipeline design is currently not in a working condition.

Below, Figure 16 shows what our theoretical timings would

be with a 5 stage pipeline. These calculations were done by

timestamping the 3 stage pipeline.

Trial Get (us) Spatial (ms) Temp (ms) Amp (ms) Set (ms) Total (ms)
Trial1 4 360 409 245 33 1047.00
FIGURE 16: THEORETICAL TIMINGS OF A 5 STAGE PIPELINE

Had the 5 stage pipeline work as intended, then although

the total time per frame is 1047 ms, however, since this is a

5 stage pipeline, five frames could be calculated

simultaneously. This makes the throughput of the 5 stage

pipeline process ideally 5 times faster. However, since the

load balancing of each stage isn’t perfect, the actual

performance increase is limited by the slowest stage. From

Figure 16, the slowest stage is the temporal filtering stage at

409 ms. This means that after 5 stages of latency, each new

frame will come out at approximately 409 ms. Our

theoretical timings in Figure 16 doesn’t take into account

the pipeline overhead time. Comparing the pipeline

overhead between the sequential and 3 stage pipeline, the

setup cost of creating the two additional stages to the

pipeline is ~100 ms. If we assume that the adding two

additional stages also adds about ~100 ms of overhead, then

the theoretical throughput of the 5 stage pipeline is about 1

frame per 500 ms. The performance increase is shown in

Figure 17, with the five stage pipeline having a theoretical

performance increase of 1.82.

Longest Stage (ms) Performance Increaes
1 908.8 1
3 1018.56 0.89
5 500 1.82

FIGURE 17: PERFORMANCE INCREASE WITH PIPELINE

Looking at the results, the 3 stage pipeline is slower than

the sequential one. The 3 stage pipeline would be faster had

the image processing been divided more evenly. The theory

was that getting a frame, and saving it to memory is slow

compared to the image processing time. From these results,

the assumption is wrong. An improvement to be made to the

3 stage pipeline would be to move some of the image

processing to the get and set stages of the 3 stage pipeline.

The theoretical improvements should be between the

sequential and five stage pipeline.

Decreasing the calculation time it takes to do image

processing on a frame is one way to increase performance.

Another way of increasing performance is to give more

information to the operator so that the operator can make a

more informed decision. This was the thought process

behind using parallel reduce to increase performance. The

goal was to have multiple parallel paths that filtered and

amplified different frequencies at the same time. After

splitting to perform their individual filtering and

amplification, the join process will concatenate the various

different filtered images into one large image. This was the

goal, however, after running with only one filter (parallel

reduce with only one path, in other words, no

parallelization), the setup time required by creating the

parallel reduce class is so heavy, that it is not practical to

use. This is shown in Figure 18.

Trial Calc (s)
Trial1 1.04

Trial2 1.1

Trial3 1.16

Trial4 1.1

Trial5 1.07

Average 1.094

Parallel Reduce (640x480)

FIGURE 18: AVERAGE RUN TIME OF PARALLEL REDUCE

IMPLEMENTATION

They are many reasons why the parallel reduce

implementation may not show a speed improvement. The

most likely reason why the implementation is slower than

the sequential implementation is likely due to the creation of

the class. For each filter, a new class needs to be created,

and the process of creating that class is slow. This can be

seen in how the parallel reduce was implemented in Figure

19.

FIGURE 19: CODE SNIP OF EMM CLASS CREATION

V. CONCLUSIONS

The results of the experiment shows that there is potential
for improving the performance of Eulerian Video
Magnification. By adding more pipelines and spreading out
the calculations over different stages will increase the
throughput at the cost of increasing the latency. The image
processing improvement is more apparent when processing
large resolution videos. With a potential gain of 1.82 from
our theoretical results in our 5 stage pipeline. If time had
permitted, the bugs in the 5 stage pipeline would’ve been
resolved, and empirical results could’ve been achieved.

There is still potential in the parallel reduce
implementation. Due to time constraints, the bug that caused
the parallel reduce to decrease performance could’ve been
patched. An improvement on the algorithm doesn’t
necessarily need to be an improvement to the calculation
times. Improvement can also be in the form of providing
more information so that the operator can make an informed
decision. For example, a video feed that shows motion
magnification at 8 different frequencies.

VI. REFERENCES

[1] H. B. Belgacem, “Eulerian video magnification,” Eulerian

Video Magnification · Hussem Ben Belgacem,
https://hbenbel.github.io/blog/evm/

[2] Gupta, V. (2024) Color spaces in opencv (c++/python),
LearnOpenCV. Available at: https://learnopencv.com/color-
spaces-in-opencv-cpp-python/

[3] International Color Consortium (2004) Specification
ICC.1:2004-10. Available at:
https://www.color.org/icc1v42.pdf

https://hbenbel.github.io/blog/evm/
https://learnopencv.com/color-spaces-in-opencv-cpp-python/
https://learnopencv.com/color-spaces-in-opencv-cpp-python/
https://www.color.org/icc1v42.pdf

