
Parallel Conway’s Game of Life

Stefanie Kozera
Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: skozera@gmail.com

Abstract—Conway’s Game of Life is a cellular automaton
algorithm - a set of rules run over a grid - which makes it a
prime candidate for optimization using parallel computing [1].
This implementation of Conway’s ‘Life’ utilizes Intel’s
Threading Building Blocks (TBB) library to parallelize the Life
algorithm, specifically, parallel_for to optimize the execution of
the main algorithm, parallel_reduce to count the number of
alive cells in a given Game of Life generation, and
parallel_invoke to run the prior two algorithms at the same
time.

This implementation features an option menu that allows the
user to modify many parameters, such as game board size and
generation count. By changing the parameters of the game it
was found that with sufficient game board size there are indeed
very significant gains to be had when parallelizing this
algorithm. The biggest optimizations came from the
parallelization of the main algorithm utilizing parallel_for, but
the most efficient configuration utilized all three parallelization
algorithms working together. Conway’s Life is a strong
contender for optimization by parallel computing, provided the
speed increases are wanted and achievable for its given
implementation.

I. INTRODUCTION
In 1970 a Cambridge mathematician named John Horton

Conway released his carefully tuned cellular automaton
algorithm - the Game of Life. Cellular automaton refers to
systems where rules are applied to cells within a regular
grid, and Conway’s specific algorithm was not very
complicated, only a few rules explaining which of two states
the cells fall into, alive or dead [1]. None-the-less, these
simple rules result in myriad patterns, and mathematicians
and other enthusiasts are still finding new patterns and
start-states to this day. Since 1970, the Game of Life has
developed something of a cult following, and it is very
likely one of the most programmed computer games in
existence, due to its interesting results and relatively simple
ruleset [1].

An algorithm applied over a 2D grid is the sort of
problem that thrives within parallel computing. This project
is a proof of concept. If one was to run Life as fast as they
possibly could, would there be significant gains utilizing
parallel computing with a library such as Intel’s TBB? In
addition, as a proof of concept, it was important that the
implementation be easily displayed to interested parties.
This implementation of Life features a user interface
designed with the ncurses library, a handy library for

interacting with the terminal [2]. There is an options menu,
which allows the user to modify many different parameters
for the game, and a demonstration mode, so the user can see
the Game of Life running at a speed the human eye can
easily parse, before utilizing the parallelization strategy to
push the algorithm to the limit.

While Conway’s Game of Life is very interesting, and
still incredibly popular many years after its inception, it is
not the most useful of algorithms. However, cellular
automata do have real world applications. There are models
used in the fields of physics for gas and fluid dynamics,
cryptography applications, and models used to study
epidemiology, anthropology, and biology [3]. A parallel
implementation of the Game of Life proves that these other
models might find performance gains in their
implementations if they choose to go with a parallelized
approach, which could save significant amounts of time
when used for highly complicated algorithms.

II. METHODOLOGY

A. The Game of Life
The Game of Life has the following rules [4]:

1. A live cell with fewer than two neighbors dies
2. A live cell with two or three neighbors lives
3. A live cell with more than three neighbors dies
4. A dead cell with exactly three neighbors lives

Consider the following example in figure 1, where ‘0’
indicates a dead cell and ‘1’ indicates an alive cell. We will
consider this current state generation ‘i’ or gen[i]. The
middle square in a 3 by 3 grid will be considered element
‘y,x’ of a 2D array, or element[y][x].

Fig 1: gen[i]

1 1 0

1 0 0

0 0 0

Considering only the middle cell, element[y][x], when
we apply the Life algorithm, all eight surrounding cells are
taken into account. The current element[y][x] is dead, but a

dead cell can become an alive cell if exactly three of its
neighbors are alive, which is the case in figure 1. We will
apply the following logic:

neighborCnt = element[y-1][x-1] + element[y-1][x] +
element[y-1][x+1] + element[y][x-1] + element[y][x+1] +
element[y+1][x-1] + element[y+1][x] + element[y+1][x+1]

if(gen[i].element[y][x] == 0) {
if (neighborCnt == 3){

gen[i+1].element[y][x] = 1
}

}

Specifically, we add up all 8 surrounding cells, then
determine if our current middle cell, element[y][x], is alive
or dead. If it is dead, we then see if there are 3 living
neighbors and if so this dead element[y][x] becomes alive.
Figure 2 shows the results in gen[i+1].

Fig2: gen[i+1]

x x x

x 1 x

x x x

Note, only the middle cell’s state was determined for
gen[i+1]. All surrounding cells must undergo this algorithm
on their own to discover their own subsequent state.

Let’s take another example, where element[y][x] is alive
and has many alive surrounding neighbors, in figure 3.

Fig 3: gen[j]

1 1 0

1 1 0

0 0 1

An alive cell is guaranteed death if it has more than three
living neighbors, which is the situation element[y][x] finds
itself in. In this case the following algorithm would be
appropriate.

else if(gen[j].element[y][x] == 1) {
if (neighborCnt > 3 || neighborCnt < 2) {

gen[j+1].element[y][x] = 0
}

}

This time, we check to see if element[y][x] is alive, and
if it has the appropriate number of living neighbors. As it
does not, during the next generation, gen[j+1], this cell will
be dead and set to 0. See figure 4.

Fig 4: gen[j+1]

x x x

x 0 x

x x x

This logic forms the basis of all Conway’s Game of Life
implementations. One problem to consider is the situation
of edge cases. In the algorithm as originally imagined by
Conway, there are no formal edges. The surrounding grid of
dead cells reaches out infinitely in all 2 dimensional
directions, with the only consideration being any live cells.
This was not appropriate for this configuration, as one of the
adjustable parameters is the board size, and having an
infinite board will not provide as clean results when
determining the usefulness of the parallelization strategies.

Instead, the board was confined to a 2D array of a
particular size, and on an edge the same 4 rules are applied.
An edge case will simply have less potential neighbors to
count. For example, a normal cell has 8 neighbors to check,
but a case on the corner will only have 3 neighbors to check,
and a case along one of the edges will only check 5
neighbors.

B. ‘This’ Game of Life
The ncurses library was used both to create an options

menu, and to facilitate a demonstration mode to display Life
in a visual way. The menu options are as follows:

1. Mode: Demo/Calc
2. Board Size X
3. Board Size Y
4. Starting State
5. Generations
6. Parallel For On/Off
7. Parallel Reduce On/Off
8. Parallel Invoke On/Off

This report serves as documentation for this Life
program. Functionality of the menu options is as follows.

Mode: Demonstration/Calculation. Demo mode will run
an instance of Life within the terminal, with each generation
showing for 500ms. The selected board size, generations,
and parallelization strategies are not utilized in demo mode,
and the program will run until the user exits. Calc mode
will use all selected parameters to run an instance of Life
until completion, then will provide information to the user
within a menu. The information will consist of the board
size, generations, the final alive count, which parallelization
options were enabled, and the time to complete the Game of
Life.

Board Size X: The size of the board along the X-axis.
Type in the requested value and press enter, or backspace to
leave.

Board Size Y: The size of the board along the Y-axis.

Starting State: Determines the starting state of the board.
Percentage based will fill the board at a 25% density across
the entire board size. Preconfig1 is a Gosper Glider Gun
starting state which will infinitely fire Glider Guns into the
bottom right corner of the board [5]. Preconfig2 and
Preconfig3 are not used.

Generations: The number of generations to run in calc
mode. Type in the requested value and press enter, or
backspace to leave.

Parallel For: Enable or disable the parallel_for
algorithm. The option with the asterisk is the option that is
used.

Parallel Reduce: Enable or disable the parallel_reduce
algorithm.

Parallel Invoke: Enable or disable the parallel_invoke
algorithm.

Within the main menu, selecting start will begin the
program, and pressing exit will exit the program without
running the Game of Life.

In addition, when running calculation mode, the count of
alive cells during all generations will be recorded in an
array, and then output to a .txt file named AliveCnt.txt. This
file can be used to verify functionality of the program, and
is interesting information about the Game of Life
throughout the generations it has run.

C. Parallel Game of Life
This implementation utilizes three parallelization

strategies to test the optimization gains during Life. They
are as follows:

1. Parallel For: Used when applying the Game of Life
algorithm across the entire board. Parallel_for is
also used to save the ‘Next Generation’ variable to
the ‘Current Generation’ variable, to prepare the
variables for the next generation calculation.
When enabled or disabled, both uses of parallel_for
are enabled or disabled. It is not possible to only
enable one or the other.

2. Parallel Reduce: Used to count the number of alive
cells on the game board for each generation. These
results are output to AliveCnt.txt, and the final
count is displayed in the terminal.

3. Parallel Invoke: Used to run the Game of Life
algorithm and the alive count at the same time in
parallel.

All parallelization options are individually toggleable.
For example, it's possible to only utilize parallel_invoke, in
which case the Game of Life algorithm and the alive count
would both run in parallel, but neither would utilize
parallel_for or parallel_reduce, and instead would be
handled using sequential logic. Likewise, it's possible to
enable parallel_for and parallel_reduce, but not
parallel_invoke, in which case the alive count and the Life
algorithm would both be run in parallel, but would run one
after another, not at the same time. A standard sequential
operation can be utilized by disabling all parallel strategies.

III. EXPERIMENTAL SETUP
This program was run on Ubuntu 24.04.1 LTS, on a

desktop computer with an AMD Ryzen 9 5900X, with 12
cores, 24 threads, and a base clock speed of 3.7 GHz. It was
compiled and run in GNOME Terminal, version 3.52.0,
which is the terminal included in the Ubuntu version used.
When taking time measurements, no other programs were
running. The TBB version used was 2021.11.0-2ubuntu2.
The ncurses version used was 6.4+20240113-1ubuntu2.

It was expected that there be some performance gains
when utilizing parallelization. The question was how large
would these performance gains be, and would changing any
of the various other factors affect these results. All timing
results are averages of 10 attempts.

IV. RESULTS

For a baseline understanding of the optimization results,
a board size of 500x500 was utilized, over 50 generations.
So results were consistent, preconfig1, the glider gun, was
used. Then, all combinations of parallelization options were
tried and recorded. See Table 1. X indicates the algorithm
was activated, where a blank square indicates the algorithm
was not activated.

Table 1:

For Reduce Invoke us

112036

X 18305

X 121199

X 224865

X X 218305

X X 15731

X X 16563

X X X 15658

Using this data, we can compare all three parallelization
strategies, both in isolation, and when used in conjunction
with other parallelization strategies.

Parallel_for is clearly the most useful strategy employed.
All results that utilize parallel_for are significantly quicker
than use without, sometimes by a factor of 10. Our baseline
sequential results is 112,036 us. Use of parallel_for reduces
this to 18,305 us. It is clear that the main algorithm is a
significant bottleneck. This makes sense, as parallel_for is
used twice in the program, and is ‘doing the most’ in terms
of calculation. There are many comparisons it has to
process to determine the next generation, and then it has to
be used again to set the variables so it can repeat the process

Parallel_reduce does not result in performance gains
when used on its own, but interestingly, it does result in
performance gains when used with parallel_for. This result
seems a little odd, and is perhaps due to the differences in
implementation when using parallel_for versus not. It was
not possible to completely isolate the parallelization
strategies, as setup differs when using them compared to the
standard implementation.

Parallel_invoke goes the same way as parallel_reduce.
When using parallel_invoke on its own, the results are very
unfortunate, taking almost double the time of the sequential
implementation. Again though, if parallel_invoke is used
with parallel_for, there is a decent gain of around 300 ms.
What is interesting is the results of all three algorithms
compared to the results while utilizing just parallel_for and
parallel_reduce, with a time of 15,658 ms vs. 15,731 ms. Is
there any use in running parallel reduce when utilizing all
three algorithms? This perhaps points to the parallel_for
bottleneck again. If the main Life algorithm is taking longer
than the alive count algorithm, even without
parallel_reduce, we would not see any performance gains,

as invoke would not be able to speed up faster than the main
Life algorithm.

Whether parallel reduce is actually useful with
parallel_for and parallel_invoke, or not, using all three
algorithms did result in the quickest time by a little bit, so
moving forward we will compare all three algorithms on,
and all three algorithms off, as we adjust the other
parameters available in this Life implementation. Next, we
will try a board size of 2000x2000, to see if a larger board
results in more parallelization gains. The results are located
in Table 2.

Table 2:

for/reduce/invoke Board Size us

500x500 112036

X 500x500 15658

2000x2000 1820136

X 2000x2000 207229

It is clear even with a board size of 2000x2000, there are
still performance gains when using parallelization, but how
much better is the performance in comparison with a
sequential implementation? To analyze this, we will take
the parallel time as a percentage of the sequential time using
the equation (para_on)/(para_off) * 100%. Results are in
Table 3.

Table 3:

Board Size Time % of Seq

500x500 13.97

2000x2000 11.39

Looking at these results, at 500x500, the parallel
operation takes ~14% of the time of the sequential
operation. At 2000x2000, the parallel operation takes
~11.4% of the time of the sequential operation. This is
indeed an improvement, and shows that as the board gets
significantly larger there are more optimization
improvements to be had.

What if we did the same, but with generations? See
Table 4.

Table 4:

for/reduce/invoke Generations us

10 22007

X 10 4157

25 54341

X 25 8469

50 112036

X 50 15658

And as percentages, in table 5.

Table 5:

Generations Time % of Seq

10 18.89

25 15.58

50 13.97

We have similar results here. As we increase generation
count, the percentage of time taken decreases. This is likely
due to a certain amount of overhead in starting and ending
the program. With a larger board, or more generations,
there is more opportunity for the parallelization algorithms
to impart improvement.

One last lever to pull: the starting state. This
implementation contains two starting state options, a glider
gun configuration that is rather small in comparison to the
rest of the board, a 36 by 9 2D array, and a random
percentage configuration that covers the entire starting
board in alive cells at a random density of 25%. Would the
two different starting configurations result in different
timings, keeping board size equal at 500x500, and
generations equal at 50? See table 6:

Table 6:

for/reduce/invoke Configuration us

Glider Gun 112036

X Glider Gun 15658

25% coverage 167445

X 25% coverage 19987

At a percentage based coverage, it does indeed take
longer to execute the Life program, in both a sequential and
a parallel approach. If we run our percentage equation again
we see the following results in Table 7:

Table 7:

Starting State Time % of Seq

Glider Gun 13.97

25% coverage 11.94

We obtain better time percentages during the percent
coverage scenario, but note that the 25% percent coverage
scenario takes longer in both a sequential and parallel
approach. It might be that with such a high coverage
density, with many cells changing states across the whole
board, there is a bigger slowdown in the sequential
implementation that is partially mitigated through the
parallel implementation. Another reason the parallel
implementation works very well for the Life algorithm.

These results overall seem largely expected. The Game
of Life is a very good candidate for parallelization due to the
fact that it is an algorithm run over a very large set of
variables, a common example for use with parallel_for. It
makes sense then, that parallel_for netted the most time
improvements in isolation, although it is interesting that all
three options enabled at once provide the most
improvements overall. Once the main Life algorithm is
handled, it seems there is plenty of opportunity for smaller
incremental improvements that can be made with creative
application of other parallelization techniques.

CONCLUSIONS

Conway’s Game of Life, and other cellular automata, are
excellent candidates for parallel computing. This
implementation of Life proved that parallelization can create
incredible time saving benefits, by factors of 10 or beyond,
depending on the scope of data being manipulated by the
cellular automaton algorithm. This, of course, depends on
the purpose of the particular cellular automaton. Conway’s
Game of Life is often experienced visually, which was why

this implementation featured a specific mode where the user
can watch the algorithm with timing easy to parse via
human eye, but other cellular automata serve different
purposes such as cryptography and biology [3]. In these
cases, optimizations from parallel computing could save
huge amounts of time.

This implementation still has space for improvement.
The menus are not very robust, and could use some cleaning
up. In addition it would be good to add more
pre-configurations, or the ability to load in any preconfig
from a defined file structure. There are a few popular ones
available for the Game of Life already. In addition, it would
be interesting to see if the performance gains are similar
when using a different parallel computing library, such as
Pthreads. The hope would be that this implementation
could serve as a basis for other cellular automata algorithms;
ones with different uses, both algorithms that are amusing,
and algorithms that serve important, real world applications.

REFERENCES

[1] P. Callahan, “What is the Game of Life?,” Math.
http://www.math.com/students/wonders/life/life.html (accessed Dec.
14, 2024).

[2] P. Padala, “NCURSES Programming HOWTO,” Tldp, Jun. 20, 2005.
https://tldp.org/HOWTO/NCURSES-Programming-HOWTO/intro.ht
ml#WHATIS (accessed Dec. 14, 2024).

[3] R. Awati, “Cellular Automaton (CA),” TechTarget, Dec. 2021.
https://www.techtarget.com/searchenterprisedesktop/definition/cellula
r-automaton

[4] “Conway’s Game of Life,” Conwaylife, Dec. 02, 2024.
https://conwaylife.com/wiki/Conway%27s_Game_of_Life

[5] “Gosper Glider Gun,” Conwaylife, Nov. 21, 2023.
https://conwaylife.com/wiki/Gosper_glider_gun

