ECE 4772 / 5772: High-Performance Embedded Programming

Semester – Fall 2024

Professor: Dr. Daniel Llamocca

Project Topic: Image Stitching using <u>Parallel programming</u>

Team:

Manoj Verma

OAKLAND UNIVERSITY...

School of Engineering and Computer Science

Presentation Outline:

- Project Goal
- Introduction to Image-stitching
- > Steps
- Image Stitching Sequential Method
- Image Stitching TBB Pipeline Method (2D Image)
- Image Stitching TBB Pipeline (1-D Image)
- Image Stitching Parallel_For (Row)
- Image Stitching Parallel_For (Column)
- Image Stitching Parallel_For (Row + Column)
- Image Stitching PThreads
- Processing Time and Speedup
- Processing Time measurements for different size of input images
- Live Demo.
- References
- Appendix Source Code Details
- Questions

Project Goals:

- The purpose of this project is to develop an algorithm for stitching and blending images using parallel programming. During this semester, I gained a significant amount of knowledge about parallel programming, I have tried to used most of them in this project.
 - Using **<u>Parallel Pipeline</u>** parallel programming techniques.
 - Three stage pipeline stages
 - Using Parallel-For parallel programming techniques.
 - Parallel_For to parallelize Row
 - Parallel_For to parallelize the Column
 - Nested Parallel_For to parallelize both Row and Column.
 - Pthread Multi threading programming Techniques.
 - Number of threads based on the user input.
 - Default 50 threads
 - Data Acquisitions and Performance analysis between different programming techniques and speedup.
 - Python Script to Validate the result
 - Developed a python script to validate the results.
 - Demonstrate the stitched image result.

Introduction Image-stitching:

- Image Stitching is the process of merging multiple images into a single high-resolution or panoramic image. An image blending technique is used in compute vision and image processing fields to create seamless images.
- While my research I found that there are many advance algorithms for both image stitching and blending, however I am focusing in developing an image stitching approach where I could apply the parallel programming techniques to optimize the performance and maximize the throughput.
- The human visual system is highly sensitive to changes in brightness, which helps to discern different visual artifacts. It is quite easy for our visual system to distinguish two different images if we just stitch the image without applying any blending, as shown in the Figure-1, it has no homogenous blending.

Images that's need to be stitched:

Image-1:

- Width: 750
- Height: 530

Image-2:

- Width: 750
- Height: 530

Image stitching without weight function:

Steps:

Input Image-1

- Update weight function vectors w1 and w2 for Image1 and Image2.
- Create dynamic memory sections
- Apply different parallel programming techniques to process both the images.
- Store the intermediate processed image and final stitched output image.
- > Write the processed output image into a file.
- De-allocate all the dynamic memories.
- Analyze the stitched image.

Image Stitching - Sequential Method

Mode	Image1 & Image2 Size	1	2	3	4	5	6	7	8	9	10	Average Process time (in uSec)
	750 x 530	4615	2999	5057	4623	4403	3773	2871	2989	4405	2974	3870,9
Sequential	1920 x 1080	11723	11717	11781	13940	11453	11627	11663	14135	14298	11721	12405,8

Image Stitching - TBB Pipeline Method (2D Image):

- To reads the rows from Image-1 and Image-2 and create a two n-element vector for the next stage. >
- The parameter passed this first stage are: >
 - Two Images (two 2D data arrays 2 NV x n matrices).
 - Two Vectors (Both vectors will have n elements)
 - Intermediate 2D array (NV x 2n)
 - Value of n (Elements in each vector)
 - Value of NV (total no. of rows in the images)

Image Stitching using TBB Pipeline(2D Image): Stage-1

void RunPipeline (int ntoken, int n, int NV, unsigned char **a, unsigned char **b, unsigned char **r, double *w1, double *w2, unsigned char *c) {

parallel_pipeline(ntoken,

- _____make_filter<void, MyPixelPair>(filter::serial_in_order, my_in(a, b, w1, w2, r, n, NV))
- & make_filter<MyPixelPair, unsigned char*>(filter::parallel, PixelWeight_Calculator())
- & make_filter<unsigned char*, void>(filter::serial_in_order, My_StitchedImage(c, n)));

Image Stitching using TBB Pipeline(2D Image): Stage-2

void RunPipeline (int ntoken, int n, int NV, unsigned char **a, unsigned char **b, unsigned char **r, double *w1, double *w2, unsigned char *c) {

parallel_pipeline(ntoken,

- make filter<void, MyPixelPair>(filter::serial_in_order, my_in(a, b, w1, w2, r, n, NV))
- & make filter<MyPixelPair, unsigned char*>(filter::parallel, PixelWeight Calculator() →
- & make_filter<unsigned char*, void>(filter::serial_in_order, My_StitchedImage(c, n)));

2n

Image Stitching using TBB Pipeline(2D Image): Stage-3

void RunPipeline (int ntoken, int n, int NV, unsigned char **a, unsigned char **b, unsigned char **r, double *w1, double *w2, unsigned char *c) {

parallel_pipeline(ntoken,

- make_filter<void, MyPixelPair>(filter::serial_in_order, my_in(a, b, w1, w2, r, n, NV))
- & make_filter<MyPixelPair, unsigned char*>(filter::parallel, PixelWeight_Calculator())
- & make_filter<unsigned char*, void>(filter::serial_in_order, My_StitchedImage(c, n)));=

Image Stitching using TBB Pipeline (1-D Image): Stage-1

Image Stitching using TBB Pipeline (1D- Image): Stage-2

/*Function where parallel_pipeline is invoked*/

void RunPipeline1 (int ntoken, int n, int NV, unsigned char *a, unsigned char *b, unsigned char *r, double *w1, double *w2, unsigned char *c) {

parallel_pipeline(ntoken,

- make_filter<void, MyPixelPair1>(filter::serial_in_order, my_in1(a, b, w1, w2, r, n, NV))
- & make filter<MyPixelPair1, unsigned char*>(filter::parallel, PixelWeight_Calculator1()) =
- & make_filter<unsigned char*, void>(filter::serial_in_order, My_StitchedImage1(c, n)));

class PixelWeight_Calculator1{

```
unsigned char* operator()(MyPixelPair1 input) const{
```

int i; double temp1, temp2; unsigned char *result = input.r;

```
for(i = 0; i < input.n; i++){</pre>
```

if(i < (input.n/2)){</pre>

result[i] = input.x[i];

```
temp1 = input.wy[i]*input.y[i];
temp2 = (temp1 >= 0)?(temp1 + 0.5):(temp1 - 0.5);
result[i + input.n] = (unsigned char)temp2;
```

} else{

```
temp1 = input.wx[i]*input.x[i];
temp2 = (temp1 >= 0)?(temp1 + 0.5):(temp1 - 0.5);
result[i] = (unsigned char)temp2;
```

result[i + input.n] = input.y[i];

return result;

Image Stitching using TBB Pipeline (1D-Image): Stage-3

/*Function where parallel_pipeline is invoked*/

void RunPipeline1 (int ntoken, int n, int NV, unsigned char *a, unsigned char *b, unsigned char *r, double *w1, double *w2, unsigned char *c) {

parallel_pipeline(ntoken,

- make_filter<void, MyPixelPair1>(filter::serial_in_order, my_in1(a, b, w1, w2, r, n, NV))
- & make_filter<MyPixelPair1, unsigned char*>(filter::parallel, PixelWeight_Calculator1())
- & make_filter<unsigned char*, void>(filter::serial_in_order, My_StitchedImage1(c, n)));

Image Stitching - Parallel_For (Row)

(Row Parallel)

		Pa	rallel_I	For Im	age St	itching						
Image_1 NV x n		parallel for (9 fo	<pre>_for(blocked_ra ize_t i = r.beg r (int j = 0; j double temp1, p if (j > (n/2)){ temp1 = (doub temp1 = temp1 pixel_value =</pre>	<pre>nge<size_t>(0, in(); i <r.enc < n; j++){ ixel_value; le)input_image *w1[j]; (temp1 >= 0);</r.enc </size_t></pre>	NV), [&](block 4(); ++i){ 21[(i*n) + j]; 2(temp1 + 0.5):	ked_range≺size_ (temp1 - 0.5);	t> n){				itput Imag	
.mage_2 NV x n W1 W2 0 W2 0 Weight w ₁ 0 Weight w ₁	hage I_2 $I_{blend} = \frac{w_1 I_1 + w_2 I_2}{w_1 + w_2}$ NV x 2n);	<pre>out_img_tbb[(out_img_tbb[(else{ temp1 = (doub temp1 = temp1 pixel_value = out_img_tbb[(out_img_tbb[(} }</pre>	<pre>i*n*2) + j] = i*n*2) + j + r le)input_image *w2[j]; (temp1 >= 0): i*n*2) + j] = i*n*2) + j + r</pre>	<pre>(unsigned char) = input_imag 22[(i*n) + j]; ?(temp1 + 0.5): input_image1[(. n] = (unsigned of)</pre>	<pre>)pixel_value; e2[(i*n) + j]; (temp1 - 0.5); i*n) + j]; char)pixel_valu</pre>	e;					
											ole -	
Mode	Image1 & Image2 Size	1	2	3	4	5	6	7	8	9	10	Average Process time (in uSec)
TBB Parallel_For	750 x 530	2252	1737	1954	2096	1938	2359	2003	2251	2443	2034	2106,7

4517,3

1920 x 1080

Image Stitching - Parallel_For (Column)

1920 x 1080

38274,8

Parallel_For Image Stitching

Image Stitching - Parallel_For (Row & Column both)

Mode	Image1 & Image2 Size	1	2	3	4	5	6	7	8	9	10	Average Process time (in uSec)
TBB Parallel_For	750 x 530	5810	5525	7320	5706	5987	6656	6849	5332	5955	5779	6091,9
(Row + Column Parallel)	1920 x 1080	13280	14179	14041	13366	13800	13428	13806	13369	14067	12987	13632,3

Image Stitching - PThreads

Image1 & Image2 Mode Average Process time (in uSec) Size Pthreads 750 x 530 1844,3 (50 Threads) 1920 x 1080 2281,6

Image Stitching - Pthreads

Images that's need to be stitched:

Image-1:

- Width: 750
- Height: 530

Image-2:

- Width: 750
- Height: 530

Image stitching without weight function :

Image comparison: ••

Image Artifacts and processing information:

\$ **€ →** | **+** Q ∓ | 🖺

(x, y) = (1029., 512.) [7.0]

X

D:\masters\Fall_semester2024\Final_Project\matlab>python test_image.py Stitch Image Width = 3840 11

232

Figure 1

uidr4928@qhws04x:~/manoj/fall2024/lab_hw/final_project_Dec4\$./image_stitch_tbb
(read_binfile) Input binary file 'photo8a.bif': # of elements read = 2073600
(read_binfile) Input binary file 'photo8b.bif': # of elements read = 2073600

start (Pthread): 332180 us
end (Pthread):334405 us
Elapsed time using pthread(only Computation Time): 2225 us

start (Parallel_For): 334405 us
end (Parallel_For):340001 us
Elapsed time using pthread(only Computation Time): 5596 us

start (Pipeline-1D): 355751 us
end (Pipeline-1D):377369 us
Elapsed time using 1-D parallel_pipeline(only Computation Time): 21618 us

start (Pipeline-2D): 379772 us end (Pipeline-2D):397449 us Elapsed time using parallel pipeline(only Computation Time): 17677 us

start (Sequential): 341928 us
end (Sequential): 353588 us
Elapsed time using sequential(only Computation Time): 11660 us
uidr4928@ghws04x:~/manoj/fall2024/lab hw/final project Dec4\$

Processing Time and Speedup:

Mode	Image1 & Image2 Size	1	2	3	4	5	6	7	8	9	10	Average Process time (in uSec)	Speedup (S(p) = T(1) / T(p))
Sequential	1920 x 1080	11723	11717	11781	13940	11453	11627	11663	14135	14298	11721	12405,8	
TBB Pipeline	1920 x 1080											21582 5	0 574808294
(1D Array)	1920 x 1000	21739	21950	21690	21947	21362	21693	21310	21548	21292	21294	21002,0	0,071000231
TBB Pipeline	1920 x 1080											19880.6	1.085606068
(2D Array)		19997	19878	19645	18806	19951	19996	20468	20107	20550	19408		_,
TBB Parallel_For	1920 x 1080											4517.3	4.400991743
(Row Parallel)	1020 / 1000	3641	5552	4116	3615	3919	3650	7011	3750	5325	4594		.,
TBB Parallel_For	1920 v 1090											2927/ 9	0 119022924
(Column Parallel)	1520 × 1080	36797	38772	37052	38832	39951	39516	37033	36404	39229	39162	302/4,0	0,110022024
TBB Parallel_For	1020 × 1090											12622.2	2 907655249
(Row + Column Parallel)	1920 X 1080	13280	14179	14041	13366	13800	13428	13806	13369	14067	12987	13032,3	2,807055348
Pthreads	1020 × 1020											2291 6	E 07499604E
(50 Threads)	1920 X 1080	2174	2285	2088	2083	2403	2467	2224	2314	2622	2156	2201,0	5,974080045

Speedup (S(p) = T(1) / T(p))

Processing Time and Speed-up:

Mode	Image1 & Image2 Size	1	2	3	4	5	6	7	8	9	10	Average Process time (in uSec)
Sequential	750 x 530	4615	2999	5057	4623	4403	3773	2871	2989	4405	2974	3870,9
TBB Pipeline (1D Array)	750 x 530	<mark>5</mark> 958	6422	5428	<mark>6</mark> 583	6219	6206	<mark>6294</mark>	<mark>614</mark> 8	6503	6273	6203,4
TBB Pipeline (2D Array)	750 x 530	5404	5040	5420	4819	5004	5290	5423	5334	4776	5459	5196,9
TBB Parallel_For (Row Parallel)	750 x 530	2252	1737	1954	2096	1938	2359	2003	2251	2443	2034	2106,7
TBB Parallel_For (Column Parallel)	750 x 530	17155	17072	17377	17396	17882	20310	17298	17952	17377	17071	17689
TBB Parallel_For (Row + Column Parallel)	750 x 530	5810	5525	7320	5706	5987	6656	<mark>6849</mark>	5332	5955	5779	6091,9
Pthreads (50 Threads)	750 x 530	1697	1990	1836	1935	1811	1900	1790	1914	1803	1767	1844,3

AVERAGE PROCESS TIME (IN USEC)

Speedup (S(p) = T(1) / T(p))

Processing Time measurements for different size of input images:

-		
<pre>Image-1 = photo8a.bif, Resolution = 1920 x 1080 Image-2 = photo8b.bif, Resolution = 1920 x 1080 (read_binfile) Input binary file 'photo8a.bif': # of elements read = 2073600 (read_binfile) Input binary file 'photo8b.bif': # of elements read = 2073600</pre>	<pre>Image-1 = photo8aa.bif, Resolution = 7680 x 1080 (read_binfile) Input binary file 'photo8aaa.bif': # of elements read = 8294400 (read_binfile) Input binary file 'photo8bbb.bif': # of elements read = 8294400</pre>	<pre>Image-1 = photo8aaaaa.bif, Resolution = 30720 x 1080 Image-2 = photo8bbbb.bif, Resolution = 30720 x 1080 (read_binfile) Input binary file 'photo8aaaaa.bif': # of elements read = 33177600 (read_binfile) Input binary file 'photo8bbbb.bif': # of elements read = 33177600</pre>
Number of pThreads = 25 start (Pthread): 875286 us end (Pthread):877832 us Elapsed time using pthread(only Computation Time): 2546 us	Number of pThreads = 1000 start (Pthread): 603378 us end (Pthread):627887 us Blapsed time using pthread(only Computation Time): 24509 us <	Number of pThreads = 500 start (Pthread): 223304 us end (Pthread):245581 us Elapsed time using pthread(only Computation Time): 22277 us
start (Parallel_For): 877832 us end (Parallel_For):884625 us Elapsed time using pthread(only Computation Time): 6793 us	start (Parallel For): 627887 us end (Parallel For):635412 us Elapsed time using pthread(only Computation Time): 7525 us <	start (Parallel_For): 245581 us end (Parallel_For):262557 us Elapsed time using pthread(only Computation Time): 16976 us <
start (Pipeline-1D): 914243 us end (Pipeline-1D):935494 us Elapsed time using 1-D parallel pipeline(only Computation Time): 21251 us	start (Pipeline-ID): 799198 us end (Pipeline-ID):817666 us Elapsed time using 1-D parallel_pipeline(only Computation Time): 58468 us 🔶*	start (Pipeline-1D): 727115 us end (Pipeline-1D):938058 us Elapsed time using 1-D parallel_pipeline(only Computation Time): 210943 us <
start (Pipeline-2D): 938727 us end (Pipeline-2D):959543 us	start (Pipeline-ZD): 824953 us end (Pipeline-ZD):883728 us Blapsed time using parallel_pipeline(only Computation Time): 58775 us	start (Pipeline-2D): 974785 us end (Pipeline-2D):184116 us Elapsed time using parallel_pipeline(only Computation Time): 209331 us Kana
Elapsed time using parallel_pipeline(only Computation Time): 20816 us start (Sequential): 888175 us end (Sequential): 899874 us	start (Sequential): 648990 us end (Sequential): 702314 us Blapsed time using sequential(only Computation Time): 53324 us 4 uidr4928@qhws04x:~/manoj/fall2024/lab_hw/final_project_Dec4\$	start (Sequential): 311579 us end (Sequential): 507328 us Elapsed time using sequential(only Computation Time): 195749 us
<pre>Image-1 = photo8aa.bif, Resolution = 3840 x 1080 Image-2 = photo8bb.bif, Resolution = 3840 x 1080 (read binfile) Input binary file 'photo8aa.bif': # of elements read = 4147200</pre>	<pre>Image-1 = photo8aaaa.bif, Resolution = 15360 x 1080 Image-2 = photo8bbbb.bif, Resolution = 15360 x 1080 (read_binfile) Input binary file 'photo8aaaa.bif': # of elements read = 16588800 (read_binfile) Input binary file 'photo8bbbb.bif': # of elements read = 16588800</pre>	<pre>Image-1 = photo8aaaaa.bif, Resolution = 30720 x 1080 Image-2 = photo8bbbbb.bif, Resolution = 30720 x 1080 (read binfile) Input binary file 'photo8aaaaa.bif': # of elements read = 33177600 (read binfile) Input binary file 'photo8bbbbbb.bif': # of elements read = 33177600</pre>
<pre>(read_binile) input binary file 'photospb.bir': # of elements read = 414/200 Number of pThreads = 50 start (Pthread): 659449 us and (Pthread): 659449 us </pre>	Number of pThreads = 500 start (Pthread): 760480 us end (Pthread):776711 us Elapsed time using pthread(only Computation Time): 16231 us <	Number of pThreads = 50 start (Pthread): 850845 us end (Pthread):867661 us Elapsed time using pthread(only Computation Time): 16816 us 4
Elapsed time using pthread(only Computation Time): 4741 us	start (Parallel_For): 776711 us end (Parallel_For):790472 us Elapsed time using pthread(only Computation Time): 13761 us 4	start (Parallel_For): 867661 us end (Parallel_For):885494 us Elapsed time using pthread(only Computation Time): 17833 us
end (Parallel_For):670905 us Elapsed time using pthread(only Computation Time): 6715 us	start (Pipeline-1D): 37241 us end (Pipeline-1D):143942 us Elapsed time using 1-D parallel_pipeline(only Computation Time): 106701 us ◀	<pre>start (Pipeline-1D): 370454 us end (Pipeline-1D):582212 us Elapsed time using 1-D parallel_pipeline(only Computation Time): 211758 us</pre>
end (Pipeline-1D):761730 us Elapsed time using 1-D parallel_pipeline(only Computation Time): 34197 us	start (Pipeline-2D): 162394 us end (Pipeline-2D):271024 us Elapsed time using parallel_pipeline(only Computation Time): 108630 us <	start (Pipeline-2D): 630262 us end (Pipeline-2D):840373 us Elapsed time using parallel_pipeline(only Computation Time): 210111 us
<pre>start (Pipeline-ZD): 766574 us end (Pipeline-ZD):800505 us Elapsed time using parallel_pipeline(only Computation Time): 33931 us start (Sequential): 675044 us</pre>	start (Sequential): 819083 us end (Sequential): 921146 us Elapsed time using sequential(only Computation Time): 102063 us 4 uidr4928@ <u>dhws04</u> x:-/manoj/fal12024/lab_hw/final_project_Dec4\$	start (Sequential): 941459 us end (Sequential): 191377 us Elapsed time using sequential (only Computation Time): 189918 us
end (Sequential): 7015944 us end (Sequential): 701587 us Elapsed time using sequential(only Computation Time): 25643 us uidr49280cdhws04x:~/manoj/fall2024/lab_hw/final_project_Dec4\$		

Python Script:

File Name: test_image.py

Location: In the source code folder.

> ma	asters > Fall_semester2024 > Final_Project > report > image_stitching_project > 🌵 test_image.py >
	Factor2 = (((Img width - 1)/i) - 1)
	w1[i] = (Factor1)*(Factor2)
	<pre>#print("w1[",i,"] = ",w1[i])</pre>
	for i in range (0. Img width):
	if(i < halfImageWidth):
	Factor2 = i / halfImageWidth
	w2[i] = Factor2
	#print("w2[",i,"] = ",w2[i])
	$\omega^{2}[i] = 1$
	$m_{L_{1}} - 1$
	fon i in nango (A. Img hoight):
	for i in range (0, Img_neight).
	for j in range (0, img_width):
	it() > naltimagewidth):
	<pre>temp1 = Input_vector1[(1*n) +]]*w1[]]</pre>
	output_matrix[(1*n*2) + j] = np.uint8(temp1 + 0.5)
	$output_matrix[(1*n*2) +] + n] = Input_vector2[(1*n) +]]$
	else:
	<pre>temp1 = Input_vector2[(i*n) + j]*w2[j]</pre>
	<pre>output_matrix[(i*n*2) + j] = Input_vector1[(i*n) + j]</pre>
	<pre>output_matrix[(i*n*2) + j + n] = np.uint8(temp1 + 0.5)</pre>
	output_Image = output_matrix.reshape(Img_height, Stitch_img_width)
	<pre>vector_data = np.fromfile(TBB_Generated_FileName, dtype=np.uint8)</pre>
	<pre>image_data = vector_data.reshape(Img_height, Stitch_img_width)</pre>
7	
	# Display
	<pre>plt.title("Project - Stitcheded Image")</pre>
	plt.imshow(image_data, cmap='gray')
	plt.show()
	<pre>plt.title("Python - Stitcheded Image")</pre>
	<pre>plt.imshow(output Image, cmap='gray')</pre>
	plt.show()
	delta image = image data - output Image
	<pre>plt.title("Difference")</pre>
	n]t.imshow(delta image, cman='gray')
	n]t show()

Future Scope:

- > Combine more than two images of any width and height.
- Compute the transformation matrix (homograph) that aligns the matched key point from different images.
- > More sophisticated transformation to make it panoramic view.
- > 360-degree stitching view.

Conclusion:

- > The stitching of images is a very practical and extremely useful area which requires a great deal of computing power to achieve seamless output.
- The Parallel programming techniques are most widely used in multi-core CPU based hardware accelerators designed for such SIMD-based computations, and it is capable of fulfilling the computing requirements of image processing.
- The knowledge we gained from High-performance Embedded Programming contributed greatly to the development of this project.

References

- https://www.intel.com/content/www/us/en/docs/onetbb/developer-guide-api-reference/2021-6/onetbb-developer-guide.html
- https://en.wikipedia.org/wiki/POSIX
- https://en.wikipedia.org/wiki/Image_stitching
- https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html
- https://neptune.ai/blog/image-processing-python
- https://courses.cs.washington.edu/courses/cse576/05sp/papers/MSR-TR-2004-92.pdf
- https://github.com/natandrade/Tutorial-Medical-Image-Registration
- https://en.wikipedia.org/wiki/Image_stitching
- https://www.cmor-faculty.rice.edu/~zhang/caam699/p-files/Im-Align2005.pdf

Appendix - Source Code Details

Environment and tools:

- Linux
- TBB Lib
- Pthread
- g++ Compiler
- Python
- make

Executable File:

• image_stitch_tbb

Source Code Files:

- image_stitch_tbb.cpp
- image_stitch_tbb.hpp
- read_file.c
- read_filrm e.h
- Makefile
- Command to clean: make clean
- Command to build the program: make all

Command to Run: ./image_stitch_tbb "No. of Pthreads"

• Example: See the screen-shot here

uidr4928@qhws04x:~/manoj/fall2024/lab_hw/image_stitching_project\$ ^C
130 uidr4928@qhws04x:~/manoj/fall2024/lab_hw/image_stitching_project\$./image_stitch_tbb 10
Image-1 = photo8a.bif, Resolution = 1920 x 1080
Image-2 = photo8b.bif, Resolution = 1920 x 1080
(read_binfile) Input binary file 'photo8a.bif': # of elements read = 2073600
(read_binfile) Input binary file 'photo8b.bif': # of elements read = 2073600
No. of

Number of pThreads = 10 start (Pthread): 325171 us end (Pthread):328775 us Elapsed time using pthread(only Computation Time): 3604 us

start (Parallel_For): 328775 us end (Parallel_For):331979 us Elapsed time using pthread(only Computation Time): 3204 us

start (Pipeline-1D): 359609 us end (Pipeline-1D):381155 us Blapsed time using 1-D parallel_pipeline(only Computation Time): 21546 us

start (Pipeline-2D): 383554 us end (Pipeline-2D):401767 us Elapsed time using parallel_pipeline(only Computation Time): 18213 us

start (Sequential): 335503 us end (Sequential): 347151 us Elapsed time using sequential(only Computation Time): 11648 us uidr4928@ghws04x:~/manoj/fall2024/lab hw/image stitching project\$

Appendix - Source Code Details

➤ Generated Files:

Sr. No.	File Name	Generation Methods
1	Stitched_Image_Sequential.bin	Generated using the sequential method.
2	Stitched_TBB_pipeline_1d.bin	Generated using the TBB parallel Pipeline and Images are passed as 1-D arrays
3	Stitched_TBB_pipeline_2d.bin	Generated using the TBB parallel Pipeline and Images are passed as 2-D arrays
4	Stitch_image_pthread.bin	Generated using the PThreads parallelization method.
5	Stitched_TBB_parallel_for.bin	Generated using the TBB parallel_For.
6	Noblending_Stitched_Image_Sequential.bin	Generated using the sequential method without applying the Weight Function.

- > The files 1 through 5 are generated using different parallelism methods, but the contents should be the same.
- I have generated File no. 6 in order to illustrate the difference between stitched images generated using weight functions and non-weight functions.

Appendix - Source Code Details

Make File:

1 Mak	efile ×	
D: > ma	asters > Fall_semester2024 > Final_Project > report > image_stitching_project > M Makefile	
1	# Compiler/Linker Setup	
2	# Linux-specific flags	
	PLATFORM = Linux	
5	CC = g++	
6	CFLAGS = -O0 -Wall -g	
	OSLIBS =	
8	LDLIGS =	
9		
10	OBJS = image_stitch_tbb	
11	all: \$(OBJS)	
12		
	<pre>image_stitch_tbb: image_stitch_tbb.cpp image_stitch_tbb.npp read_file.o</pre>	
14	\$(CC) \$(CFLAGS) -0 image_stitcn_tbb image_stitcn_tbb.cpp image_stitcn_tbb.npp read_file.0 -im -itbb -ipthread	
15	Hibpony	
10	#LIDFary	
10	$\int \frac{f(CC)}{f(CC)} \frac{f(CC)}{f(CC)} = \frac{f(CC)}{f$	
10		
20	# Maintenance and cleaning stauff	
20		
22	clean:	
23	rm -f \$(OBJS) *.o core	
24		

Thank You

Questions??

Internal