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Abstract— In this project, I will develop algorithms for stitching and 

blending photographs using pthreads or TBB programming on a 

multicore computer learnt in this semester.         An image stitch is 

the process of combining several individual images that overlap in 

order to form a composite image. Using Multicore processing system 

and parallel programming techniques allows us to take advantage 

of the parallel processing capabilities. Using TBB libraries, we can 

write parallel programs that are capable of running on intel 

multicore CPUs in order to significantly speed up certain 

computational tasks. The stitching of images is a method of 

computer vision that involves stitching together multiple 

overlapping images to create a larger panorama in a seamless 

manner. It is commonly used for the creation of wide-angle photos 

and the generation of 360-degree images. 

I. INTRODUCTION 

Image Stitching is the process of merging multiple images into 
a single high-resolution or panoramic image. An image blending 
technique is used in compute vision and image processing fields 
to create seamless images. The aim of this project to implement 
image stitching and image blending algorithm using parallel 
programming techniques. The focus of this project based on the 
parallel programming knowledge that I gained during this 
semester. 

While my research I found that there are many advance 
algorithms for both image stitching and blending, however I am 
focusing in developing an image stitching approach where I could 
apply the parallel programming techniques to optimize the 
performance and maximize the throughput. 

II. IMAGE BLENDING 

The human visual system is highly sensitive to changes in 
brightness, which helps to discern different visual artifacts. It is 
quite easy for our visual system to distinguish two different 
images if we just stitch the image without applying any blending, 
as shown in the Figure-1, it has no homogenous blending. 

 
Figure 1: Non blended stitching 

 
I will develop a blending function to make stitching 

more homogenous. 

 
Figure 2: Weighted function for blending. 

III. IMPLEMANTAION AND ALGORITH CONCEPT 

 
Figure- 3: Block Diagram 

 
 

IV. IMAGE STITCHING – SEQUENTIAL METHOD 

Figure-4 illustrates the sequential method. The function is based 

on nested "for-loops". There is an outer loop that accesses the 

Row element of both images and an inner loop that processes the 

Column element. One potential inefficiency of this method is 

that it can be computationally intensive and slow, especially for 

large images, due to the repeated access of each pixel in a nested 

manner. Additionally, this method does not take advantage of 

parallel processing capabilities, which could significantly speed 

up the operation by processing multiple rows or columns 

simultaneously. As a result, the sequential approach may not be 

optimal for applications requiring real-time image processing.. 

 

 
Figure- 4: Sequential Processing - Block Diagram 

 

Steps: 

• There are two grayscale images of same resolutions that are 

read and stored in two dynamically allocated memory 

sections. 

• Update the weight function vectors w1 and w2 for Images 1 

and 2. 
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• Create dynamic memory sections to store the processed 

image. 

• Access every pixel in the nested for-loop, multiply the 

respective weight function elements store in the vectors W1 

and W2. 

• Write the final processed image into a file. 

• De-allocate the dynamic allocated memories. 

• In this example, I have taken two examples and processed 

them sequentially.  Below table shows the processing time 

for image sizes of 750x 530 and 1920 x 1920. The 

significant difference in processing times between the two 

image sizes can be attributed to the increased number of 

pixels in the larger image. Larger images contain more data, 

which requires more computational resources and time to 

process. Understanding these differences is crucial for 

optimizing performance and resource allocation in image 

processing tasks. 

  

 
Figure- 5: Sequential Processing time measurement 

 

V. IMAGE STITCHING – TBB PARALLEL PIPELINE 

Using TBB parallel pipeline, we can optimize the processing 

time. This TBB pipeline implementation is divided into three 

stages. The details of each stages are given below. 

• Read two grayscale images and store into two 

dynamically allocated memory sections. 
char **inputImage1 = (char **)calloc((n*NV), sizeof(char *)); 
char **inputImage2 = (char **)calloc((n*NV), sizeof(char *)); 
double *w1 = (double*)calloc(n, sizeof(double)); 
double *w2 =(double *)calloc(n, sizeof(double));  
NV = Number of Rows in the images. 
n = Number of the pixel in each row. 
Read Two image here and store into the above created 

dynamic memories. 

• Update weight function vectors w1 and w2 for Image1 

and Image2. 
int image_hw = (n/2); 

int factor1; 
double factor2; 
for (int x = 0; x<n; x++){  

factor1 = (i/image_hw); 
 factor2 = (((n-1)/(double)x) – 1); 
 w1[x] = factor2 
 w2[x] = (double)x/(double) Image_hw; 
} 

• Create two dynamic memory section to store the 

intermediate processed image and final stitched output 

image. 
o Width will twice of the input image. 

 

double **intermidiate_image = (double **)calloc((2*n*NV), sizeof(double *)); 
char **stitched_image = (char **)calloc((2*n*NV), sizeof(char *)); 

 

• Below Function will invoke the parallel_pipeline and perform 

the parallel operation. 

• Basically, it will have three parallel pipelines. 

• The function “ImageStitchPipeline” will invoke all the three 

parallel pileline. 
 

void ImageStitchPipeline (int ntoken, int n, int NV, double **a, double **r, 
double *c) { 
parallel_pipeline(ntoken, make_filter<void, MyPixelPair>(filter::serial_in_order, 
Input_myImages(inputImage1, inputImage2, w1, w2, stitch_image, n, NV)) 

    &   make_filter<MyPixelPair, double *>(filter::parallel, 
PixelWeight_Calculator ()) 
    &   make_filter<double*, void>(filter::serial_in_order, 
My_StitchedImage(c, n))); 
    } 

 
Figure- 6: Demonstration of pipeline and the operations at each stage.  

 

• Stage-1: 
• The purpose of stage-1 to reads the rows from Image-1 and 

Image-2 and create a two n-element vector for the next stage.  

• Below code snapshot realizes the first stage of the parallel 

pipeline. The parameter passed this first stage are:  
o Two Images (two 2D data arrays – 2 NV x n 

matrices). 

o Two Vectors (Both vectors will have n elements) 

o Intermediate 2D array ( NV x 2n) 

o Value of n (Elements in each vector) 

o Value of NV (total no. of rows in the images) 
 



 

 
Figure- 7: Stage-1 of the three stage TBB parallel_pipeline 

 

• Stage-1 class definition and Functor. 
class Input_myImages{ 
char **I1; 
char **I2; 
double *w1 
double *w2 
double **r; 
 int n; 
int NV; 

    
mutable int i; 
public: 
Input_myImages (char **I1p, char **I2p, double *w1p, double *w2p,  
double **rp, int np, int NVp) : I1(I1p), I2(I2p), w1(w1p), w2(w2p), r(rp), 
n(np), NV(NVp), i(0) {} 

 

MyPixelPair operator ()(flow_control &fc) const { 
 MyPixelPair t; 
 const MyPixelPair ret_val = {.x = NULL, .y = NULL, .xw = NULL, .yw = NULL, 
.r = NULL, .n = 0}; 
 if (i < NV) {  

 t.x = *(I1 + i); 
 t.y = *(I2 + i); 
 t.xw = w1 + i; 
t.yw = w2 + i;    
t.r = *(r + i); 
t.n = n;  
i++;  
return t;  
       } 
       else { 
          fc.stop();  
          return ret_val;  
      }  
  }  

             }; 
 

MyPixelPair class: 

Class MyPixelPair { 
 

Public: 

 char *x; // A n-element vector from image-1. 

 char *y; // A n-element vector from image-2. 

 double *r; // A n-element vector from intermediate image. 

 double w1; // Image-1 weight vector. 
 double w2; // Image-2 weight vector. 

int n; // Total element into each vector. 

}  
 

 
 

• Stage-2: 
• The output of the stage-1 will be vector of data type 

“MyPixelPair”. It will apply weight coefficient on each pixel of 
the image. No parameters passed to the functor. It is configured 

to run in parallel, so that items can be processed concurrently. 

The Functor of this stage is given below: 

 
 

class PixelWeight_Calculator{ 
public: 

  double * operator() (MyPixelPair input) const{ 
 

         int i; 
         double *result = input.r; 
         for(i = 0; i < input.n; i++){ 
 

   result[i] = input.w1[0]*input.x[i];         // Apply weight coefficient on image-
1 pixels. 
    result[i + n] = input.w2[0]*input.y[i]; // Apply weight coefficient on image-
2 pixels. 
 

         } 
  
         return result; 



 

     }  
 

}; 
 

 
 

• Stage-3: 
• This stage performs rounding and saturation of each pixel and 

store the data into output 2D array. Syntax-wise, the stage has 

no outputs, but this stage places the result in the array c 
(provided as an input parameter to its functor). 

• Here the total number of elements in the intermediate vector 

will be 2n. So below for loop need to process for all the 2n 
element and store into the final 2D array. 

 

 
 

class My_StitchedImage { 
 
public: 
    mutable int j; 
    double *ci; 
    int n; 
     
    My_StitchedImage (double *cp, int np): ci(cp), n (np), j(0){} 
 
    void operator () (double *rt) const{ 
 
        int k; 
         
double tmp; 
 
        for (k = 0; k < 2n; k++ ) { 
 
            if ( rt[k] > = 0) { 
 
                tmp = rt[k] + 0.5; 
  
            }  

          else 
 tmp = rt[k] – 0.5; 
        } 
        ci[k + j] = tmp; // Update the final buffer. This buffer will have the 
stitched image.  
 
        j++; 
    } 
}; 
 

 
 

• High-level flowchart is given here. 
 

 



 

• I have taken two examples and processed them using 

parallel pipeline methods. Below are the time 

measurements. The following table illustrates the processing 

time for images with sizes of 750 x 530 and 1920 x 1920 

respectively. 
 
 

 
 

VI. IMAGE STITCHING – PARALLEL_FOR TECHNIQUES 

I implemented the same stitching algorithm as TBB Parallel 
For in order to evaluate its performance. The use of TBB parallel 
provides significant advantages, including improved parallelism 
and scalability. Compared to other parallel algorithms, TBB 
Parallel For offers more efficient workload distribution and 
dynamic scheduling, which can lead to better performance on 
multi-core processors. Unlike basic thread-based approaches, 
TBB handles thread management automatically, reducing the 
complexity for developers. Additionally, it often results in better 
cache utilization and reduced overhead, making it a preferred 
choice for optimizing performance in complex applications. 
However, TBB Parallel For may not always be the best choice 
for every application. It can introduce overhead when the 
workload is too small or when the task granularity is not 
appropriately set. Furthermore, TBB's abstraction might limit 
fine-grained control over thread management, which can be 
crucial for certain specialized applications needing precise 
tuning. 

 
 

 

VII. IMAGE STITCHING – PTHREADS TECHNIQUES 

I implemented the same stitching algorithm using pthreads in 

order to evaluate its performance. In the implementation, the 

user is able to enter the number of threads that can be used to 

process each image. Using pthreads provides significant 

advantages, including improved parallelism and scalability. This 

allows for better utilization of multi-core processors, leading to 

faster image processing times. Additionally, it offers a flexible 

and efficient way to manage thread workloads, enhancing 

overall performance. 
 

 

VIII. PROCESSING TIME AND SPEEDUP 

An analysis of the performance of image stitching algorithms 

using different parallel programming techniques is provided in 

the following table. The results indicate that parallel 

programming significantly enhances the efficiency and speed of 

image stitching algorithms. 
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IX. CONCLUSION 

• For seamless output, stitching images is a very practical and 

very useful application that requires a large amount of 

computing power. Recent advancements in Parallel 

programming techniques have significantly reduced 

computational speed. These improvements allow for more 

efficient processing of high-resolution images, enabling 

stunning panoramas and 3D models. 

 

• Parallel programming techniques are most commonly used 

in multi-core CPU-based hardware accelerators designed 

for such SIMD-based computations, and they can fulfill 

many of the computing requirements for image processing. 

Parallel programming allows for faster processing times by 

distributing tasks across multiple cores, enabling 

simultaneous execution of computations. This results in 

improved performance and efficiency, particularly when 

handling large datasets and complex algorithms in image 

processing. Additionally, it can enhance the accuracy and 

quality of image analysis by enabling more detailed and 

comprehensive computations. 

 

• Our knowledge of High-performance Embedded 

Programming has been instrumental in the development of 

this project. By optimizing code for efficiency and speed, 

we significantly enhanced the system's performance. This 

expertise allowed us to minimize resource consumption, 

ensuring the software could run smoothly on same CPU 

hardware. 
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