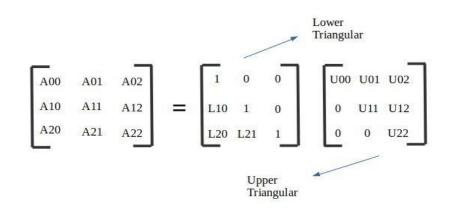

ECE-5772- HIGH PERFORMANCE EMBEDDED PROGRAMMING

ENHANCING MATRIX INVERSION EFFICIENCY A PARALLEL IMPLEMENTATION OF LU DECOMPOSITION AND CHOLESKY DECOMPOSITION

INTRODUCTION

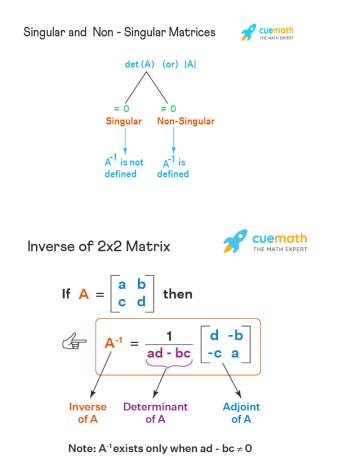
- Matrix inversion is a critical computational task in various scientific and engineering applications, such as embedded systems, signal processing, control systems, machine learning, real-time systems etc.,
- We have implemented two matrix inversion algorithms-Cholesky and LU decomposition in sequential and parallel.
- The significant performance enhancements are attained through parallel programming.

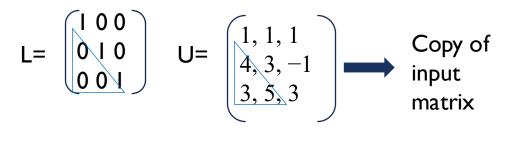

PROGRAMMING LANGUAGE: C,C++ LANGUAGE

PARALLELISATION STRATEGY: Intel TBB –Parallel_for

SOFTWARE REQUIREMENTS

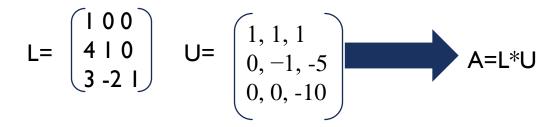
LU DECOMPOSITION MATRIX INVERSION


An LU decomposition of a matrix A is the product of a lower triangular matrix(L) and an upper triangular matrix(U) that is equal to A. **A=LU;**



intialize input, Lower triangular(L), Identity(I), Upper triangular(U), intermediate (d) and result(X) matrices. check input matrix is non-singulardeterminant is not 0. decompose A into L and U using row operation A.X=I. Substitute A=LU, LUX=I; Substitute UX=d;Ld=I;UX=d compute Ld=I using forward substitution and UX=d using backward substitution. check A.X=I stop

start


LU DECOMPOSITION MATRIX INVERSION-ALGORITHM EXPLANATION

Row operation to get L and U matrices: R2=R2-(4*R1); R3=R3-(3*R1);R3=R3-(-2*R2);-->gives U matrix

Put this multiplier in corresponding L matrix –gives L matrix

LU DECOMPOSITION MATRIX INVERSION--ALGORITHM EXPLANATION

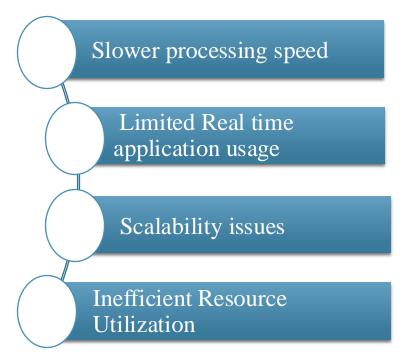
A*X=I; A=L*U; (LU)*X=I; U*X=d; L*d=I.

FORWARD SUBSTITUTION (solve from top to bottom)

L*d=I; to get d, where L- lower triangular matrix, d-intermediate matrix, I-identity matrix

Solve column by column to compute d matrix.

BACKWARD SUBSTITUTION (solve from bottom to top)


U*X=d; to get X, where U- upper triangular matrix, X-inverse matrix, dintermediate matrix(received from forward substitution) Solve column by column to compute X matrix.

VERIFICATION (verified using MATLAB)

A*X=I; where A- input matrix, X-inverse of A, I- Identity matrix. Identity matrix computed from c code is written to a binary file and this binary file is compared with the identity matrix generated by the MATLAB code and the difference between those is displayed.

$$A*X = \begin{pmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{pmatrix} * \begin{pmatrix} 7/5, 1/5, -2/5 \\ is & -3/2, 0, 1/2 \\ 11/10, & -1/5, & -1/10 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

RESULTS OF TIME STAMP ANALYSIS OF SEQUENTIAL IMPLEMENTATION

SIZE(number of rows and columns)	Computation time(in milliseconds)
100	6
500	297
1000	2428
1500	9499
1750	18699
2000	42017
2000	42017

PARALLELISATION STRATEGY-MAP PATTERN

After initialization, we used **Intel TBB parallel_for (map pattern)** for decomposition of A into L and U, **Forward substitution** to get d, **backward substitution** to compute X(output).

DECOMPOSING A INTO L AND U: parallel_for-row **FORWARD AND BACKWARD SUBSTITUTION:** parallel_for-column

For decomposing A into L and U, by using map pattern we have parallelized the rows to run in a parallel way in order to simultaneous update the values of L and U matrices.

For forward, backward substitution, main task may get divided into 3 tasks (theses 3 tasks will run in parallel however each task will run sequentially inside it), so each task may handle each column values to compute d, X from Ld=I; UX=d;

THREAD SAFE IMPLEMENTATION

where L, I- for forward and U, d-for backward, matrices are shared among 3 tasks, but these tasks won't modify/update the L, I in forward and U, d in backward, it will just read values from L and I, and U and d to compute d [3][3] and X [3][3]so that we can prevent the race condition.

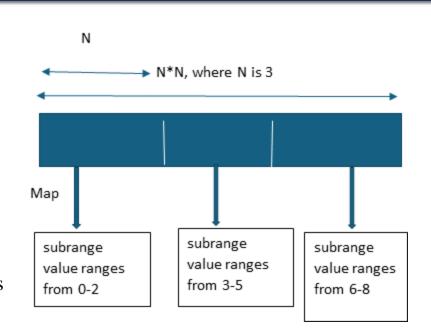


Fig. 2 depicts one possible implementation of the map pattern.

Map pattern will divide the rows/columns into different subranges and it will assign these subranges into different threads and the scheduler will assign these different threads into different cores available in the system

PARALLELISATION STRATEGY-PARALLEL PIPELINE

After initialization and decomposition of A into L and U, we used **Intel TBB parallel pipeline**, for **Forward substitution** to get d, and **backward substitution** to compute X(output).

We have implemented the forward and backward substitution by using parallel pipeline.

- First stage: Giving columns indices as input
- Second stage: Forward substitution to compute intermediate matrix(d)
- **Third stage:** Backward substitution to compute inverse matrix(x) using intermediate matrix(d) from forward substitution.

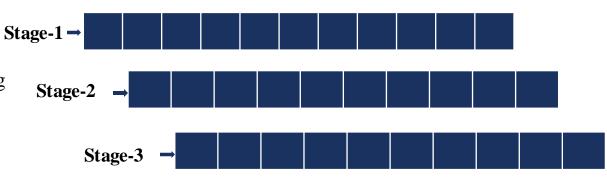


Fig. 2 depicts one possible implementation of the parallel pipeline

PIPELINE IMPLEMENTATION

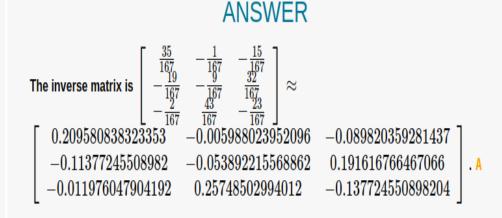
We have given number of token as 16, in the first stage 16 columns indices will be processed and given as an input to the second stage where the forward substitution will solve 16 columns in parallel to compute the intermediate matrix (d) and once the each columns is processed it will be send as an input to the final stage where backward substitution takes place to compute inverse matrix(x) using intermediate matrix(d) values from previous stage like this till the column values raeches the size of given matrix this process will continue to compute the inverse.

RESULTS

TIME STAMP ANALYSIS OF SERIAL AND PARALLEL

		SIZE (number of	Computation time(ms)		SIZE(number	Computation time(ms)
Intell_TBB- parallel_for		rows and columns)			of rows and columns)	
		100	2		100	5
		500	63		500	71
		1000	877	Intell_TBB-	1000	841
		1500	4295	parallel_pip	1500	4274
		1750	8140	eline	1750	8126
	2000	14378		2000	14257	

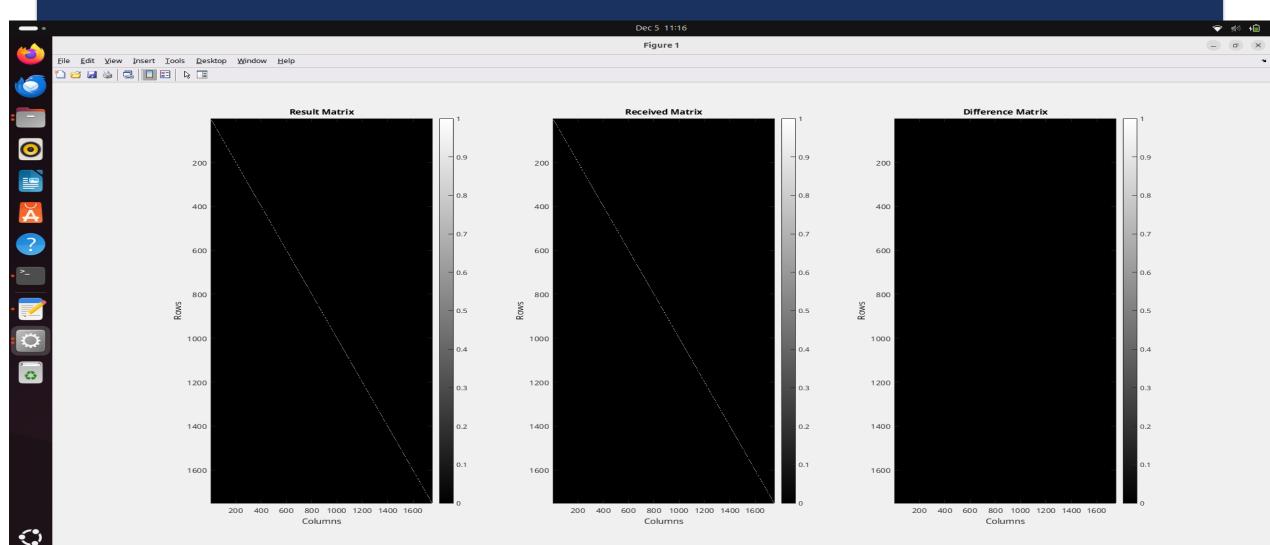
Programming methods for size=2000	Time to compute inverse (in milliseconds) and speed improvement via parallelization (in %)
Sequential	42017
Intel-TBB- Parallel_for	14378(65%)
Intel-TBB- Parallel_pipeline	14257(66%)


RESULT LU DECOMPOSITION MATRIX INVERSION- TERMINAL OUTPUT FOR SIZE 2000

```
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project/pipe$ make clean
rm -f pipe *.o core
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep project/pipe$ make all
g++ -O3 -Wall -std=c++11 -c pipe_fun.cpp -ltbb -lm
g++ -O3 -Wall -std=c++11 main.cpp pipe fun.o -lm -ltbb -o pipe
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project/pipe$ ./pipe
Enter the size of the matrix (n \times n): 2000
Starting LU decomposition and inversion with pipeline...
Pipeline elapsed time: 14415 ms
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project/pipe$ cd ..
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project$ cd paralle for
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project/paralle_for$ make clean
rm -f for *.o core
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep project/paralle for$ make all
g++ -O3 -Wall -std=c++11 -c par_fun.cpp -ltbb -lm
g++ -O3 -Wall -std=c++11 main.cpp par fun.o -lm -ltbb -o for
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project/paralle_for$ ./for
Enter the size of the matrix (n \times n): 2000
Starting LU decomposition and inversion...
Sequential elapsed time: 14493 ms
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project/paralle_for$ cd ..
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project$ cd sequential
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project/sequential$ make clean
rm -f seq *.o core
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project/sequential$ make all
g++ -O3 -Wall -c seq_fun.cpp -lm
g++ -O3 -Wall main.cpp seq fun.o -lm -o seq
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project/sequential$ ./seq
Enter the size of the matrix (n \times n): 2000
Starting LU decomposition and inversion...
Sequential elapsed time: 40531 ms
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project/sequential$
```

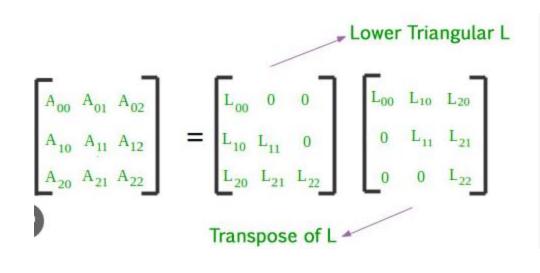
RESULT LU DECOMPOSITION MATRIX INVERSION- TERMINAL OUTPUT FOR SIZE 3

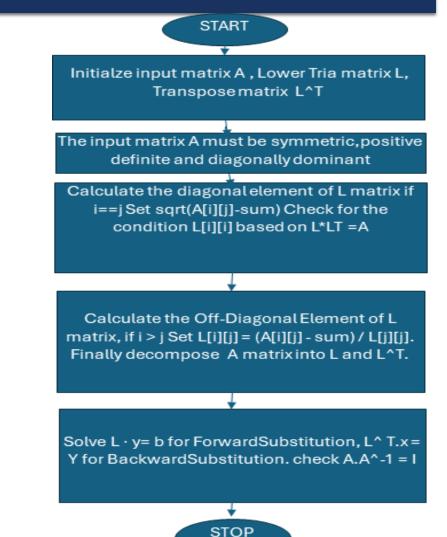
ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project/pipe\$ make clean rm -f pipe *.o core ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project/pipe\$ make all g++ -O3 -Wall -std=c++11 -c pipe_fun.cpp -ltbb -lm g++ -O3 -Wall -std=c++11 main.cpp pipe fun.o -lm -ltbb -o pipe ramya-rajaraman@ramya-rajaraman-Latitude-3500:~/hpep_project/pipe\$./pipe Enter the size of the matrix (n x n): 3 Input Matrix: 7.00 4.00 1.00 3.00 5.00 5.00 5.00 9.00 2.00 Starting LU decomposition and inversion with pipeline... Inverse Matrix: 0.21 -0.01 -0.09 -0.11 -0.05 0.19 -0.01 0.26 -0.14 Pipeline elapsed time: 2 ms Verification Matrix (A * A inv): 1.00 0.00 0.00 -0.00 1.00 0.00 -0.00 -0.00 1.00


LU DECOMPOSITION MATRIX INVERSION-SEQUENTIAL

< 🔶 🔁 🖾 💭 🧀 / 🕨 home 🕨 ramya-rajaraman 🕨 hpep_pro	oject ► sequential ►
	Z Editor - /home/ramya-rajaraman/hpep_project/sequential/lu_decompose.m
Name 🛆	i lu_decompose.m 🗶 +
 Name ∠ seq_fulltime final_with_tolerance.m final_without_pivot.m iss.bof iss_100.bof iss_100.bof iss_1500.bof iss_1500.bof iss_1750.bof iss_1750.bof iss_2000.bof iss_2000.bof iss_2000.bof main.cpp 	<pre>IU_decompose.m × + glsp('Product of Matrix and its Inverse (Should be identity Matrix):'); disp(resultMatrix); end 50 end 51 52 % Write the result matrix to a binary file 53 filename = 'matlab_result_matrix.bof'; 54 fileID = fopen(filename, 'wb'); 55 fwrite(fileID, resultMatrix, 'double'); 56 fclose(fileID); 57 % Read the binary file generated by the C code Command Window >> lu decompose</pre>
 makefile matlab_result_matrix.bof matlab_result_matrix_no_pivoting.bof project_1.m seq seq_fun.cpp seq_fun.o seq_header.h 	<pre>Solution of the matrix (n x n): 3 Input Matrix: 8 6 8 8 9 7 4 3 6 Inverse Matrix: 0.6875 0.2500 -0.6250 -0.4167 0.3333 0.1667 -0.2500 0 0.5000 Product of Matrix and Its Inverse (Should be Identity Matrix): 1 0 0 0</pre>
Iu_decompose.m (Script) V MATLAB script to replicate the C code functionality	Sum of Absolute Differences: 0 >> lu_decompose Enter the size of the matrix (n x n): 1750 Sum of Absolute Differences: 0 fx >>

LU DECOMPOSITION MATRIX INVERSION-PARALLEL


🗢 🔶 🔄 🖾 🎾 🗀 / 🕨 home 🕨 ramya-rajaraman 🕨 Docun	
	Editor - /home/ramya-rajaraman/Documents/checkinggg_seq/for/lu_decompose.m
Name 4	i lu_decompose.m × +
for	39 disp('Inverse Matrix:');
for.bof	40 disp(inverseMatrix);
for_100.bof	
for_500.bof	Command Window
for_1000.bof	>> lu_decompose
for_1500.bof	Enter the size of the matrix (n x n): 3
for_1750.bof	Input Matrix:
D for_2000.bof	6 5 7 7 6 10
🕙 lu_decompose.m	
main.cpp	
nakefile nakefile	Inverse Matrix:
matlab_result_matrix.bof	0.2500 -0.2500 0.1250
par_fun.cpp	0.9063 -0.5313 -0.1719
par_fun.o	-0.7188 0.5938 0.0156
📄 par_header.h	
	Product of Matrix and Its Inverse (Should be Identity Matrix): 1.0000 0 -0.0000
	0.0000 1.0000 -0.0000
	Sum of Absolute Differences: 0
	>> lu_decompose
	Enter the size of the matrix (n x n): 100
	Sum of Absolute Differences: 0
	>> lu_decompose
	Enter the size of the matrix (n x n): 500 Sum of Absolute Differences: 0
	>> lu decompose
	Enter the size of the matrix $(n \times n)$: 1000
	Sum of Absolute Differences: 0
	>> lu decompose
	Enter the size of the matrix (n x n): 1500
	Sum of Absolute Differences: 0
	>> lu_decompose
lu_decompose.m (Script) V	Enter the size of the matrix (n x n): 1750
MATLAB script to replicate the C code functionality	Sum of Absolute Differences: 0
······································	>> lu_decompose Enter the size of the matrix (n x n): 2000
	Sum of Absolute Differences: 0
	$f_X >>$


LU DECOMPOSITION MATRIX INVERSION-PARALLEL

CHOLESKY DECOMPOSITION MATRIX INVERSION

A cholesky decomposition is a mathematical method used to decompose a symmetric, positive definite matrix A in to the product of a lower triangular matrix(L) and its transpose L^T. $A=L*L^T;$

CHOLESKY DECOMPOSITION MATRIX INVERSION ALGORITHM STEPS

STEPS TO FOLLOW Symmetric matrix $A = A^T (A[i][j]=A[j][i])$

 $A = egin{pmatrix} 4 & 2 & 3 \ 2 & 5 & 6 \ 3 & 6 & 7 \end{pmatrix} \qquad \qquad A^T = egin{pmatrix} 4 & 2 & 3 \ 2 & 5 & 6 \ 3 & 6 & 7 \end{pmatrix}$

To verify the symmetry of the matrix manually, we check the following:

- 1. The element at position (1,2) in A is 2, and it is equal to the element at position (2,1) in A.
- 2. The element at position (1,3) in A is 3, and it is equal to the element at position (3,1) in A.
- 3. The element at position (2,3) in A is 6, and it is equal to the element at position (3,2) in A.

Since all corresponding off-diagonal elements are equal, the matrix is symmetric.

Positive-Definite matrix

- If $A=egin{pmatrix} 4&2\2&3 \end{pmatrix}$:
 - $D_1=4$ (the top-left element of A).
- $D_2 = \det(A) = (4)(3) (2)^2 = 12 4 = 8.$

Since $D_1>0$ and $D_2>0$, the matrix is **positive definite**.

Diagonal values must be positive

• symmetric and positive definite matrix.

CHOLESKY DECOMPOSITION ALGORITHM EXPLANATION

Decompose $A = L * L^T$

	4	12	-16		[?	0	0]
A =	12	37	-43	L =	?	?	0
	-16	-43	$egin{array}{c} -16 \\ -43 \\ 98 \end{array}$		[?	?	?

Compute the diagonal element L[0][0], where i==j

- Take A[0][0]=4, Since it's the diagonal element, calculate:
- L[0][0]=sqrt(A[0][0]) =sqrt(4) =2

Compute the Off -diagonal element L[1][0], where i > j

- L[1][0] = A[1][0] sum / L[0][0],
- Here, sum sum of product of already computed elements of col1 and row1
- $L[1][0] = 12 0 / 2 \Longrightarrow 6$

Compute the Off -diagonal element L[2][0], where i > j

- L[2][0] = A[2][0] sum / L[0][0],
- L[2][0] = -16 0/2 => -8

Compute the diagonal element L[1][1]

 $L[1][1]=\sqrt{A[1][1]-\mathrm{sum}}$

Where, Sum - sum of squares of already calculated value in the same row L[1][1] = sqrt(A[1][1] - L[1][0] * L[1][0])

sqrt(37 - (6*6)) = sqrt(1) = >1

Compute the Off -diagonal element L[2][1], where i > j

L[2][1] = A[2][1] - sum / L[1][1], where sum = L[2][0]*L[1][0]

L[2][1] = -43 - (-8 * 6) = -43 + 48 / 1 => 5

Similarly for L[2][2] -

sqrt(A[2][2] - L[2][0] + L[2][0] + L[2][1] + L[2][1]

sqrt(98-(8*8) + (5*5)) = sqrt(98 - 89) = sqrt(9) => 3

Diagonal computation(Serial)

• Sequential dependency & Smaller workload

$$L = egin{bmatrix} 2 & 0 & 0 \ 6 & 1 & 0 \ -8 & 5 & 3 \end{bmatrix}$$

• Numerical stability considerations Therefore,

CHOLESKY DECOMPOSITION MATRIX INVERSION ALGORITHM EXPLANATION

$A = L^* L^T; L^* Y = B; L^T * X = Y; A^*X=I;$

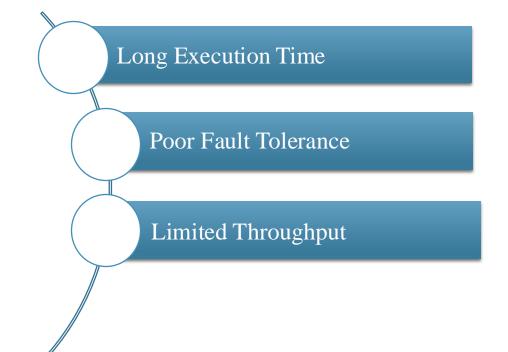
FORWARD SUBSTITUTION (solve from top to bottom)

L*Y=B; to get Y, where L- lower triangular matrix, Y-intermediate matrix, B-Identity matrix. Solve column by column to compute Y matrix.

BACKWARD SUBSTITUTION (solve from bottom to top)

L^T*X=Y; to get X, where L^T- Transpose matrix, X-inverse matrix, Y-intermediate matrix(received from forward substitution) Solve column by column to compute X matrix.

VERIFICATION (verified using MATLAB)


A*X=I; where A- input matrix, X-inverse of A, I- Identity matrix. Identity matrix computed from c code is written to a bof file and this bof file is compared with the identity matrix generated by the MATLAB code bof file , and the difference between those will displayed.

$$L = \begin{pmatrix} 2 & 0 & 0 \\ 6 & 1 & 0 \\ -8 & 5 & 3 \end{pmatrix} \quad y = \begin{pmatrix} y & 0 & y & 0 & y & 0 \\ y & 1 & y & 1 & 2 & y & 1 \\ y & 2 & y & 2 & y & 2 & 3 \end{pmatrix} b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$L^{t} = \begin{pmatrix} 2 & 6 & -8 \\ 0 & 1 & 5 \\ 0 & 0 & 3 \end{pmatrix} \quad x = \begin{pmatrix} x00 & x01 & x02 \\ x11 & x12 & x13 \\ x21 & x22 & x23 \end{pmatrix} y = \begin{pmatrix} 1/2 & 0 & 0 \\ -3 & 1 & 0 \\ 19/3 & -5/3 & 1/3 \end{pmatrix}$$

$$A*X = \begin{pmatrix} 4 & 12 & -16 \\ 12 & 37 & -43 \\ -16 & -43 & 98 \end{pmatrix} * \begin{pmatrix} 1/18 & -122/9 & 19/9 \\ -62/9 & 34/9 & -5/9 \\ 19/9 & -5/9 & 1/9 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

CHOLESKY SEQUENTIAL IMPLEMENTATION

SIZE(number of rows and columns)	Computation time(ms)
100	5
500	338
750	988
1000	2217
1500	7104
2000	17180

CHOLESKY PARALLELISATION STRATEGY-MAP PATTERN

After initialization, we used Intel TBB parallel_for (map pattern) for computing **cholesky decomposition, Foward substitution** to get Y, **backward substitution** to get X(inverse).

To decompose A in to L and L^T, we used row wise parallelization to compute the off-diagonal elements. Each thread will assigned to one or more rows and processed simultaneously.

For computing the inverse of matrix, main task may get divided into 3 tasks (these 3 tasks will run in parallel, however each task will run sequentially inside it), so each task may handle each column values to compute Y, X from Ly=b; $L^T*X=y$;

THREAD SAFE IMPLEMENTATION

where L, b- for forward and L^T, Y-for backward, matrices areshared among 3 tasks, but these tasks won't modify/update the L, b in forward and L^T, Y in backward, it will just read values from L and b, and L^T and Y to compute Y [3][3] and X [3][3]so that we can prevent the race condition.

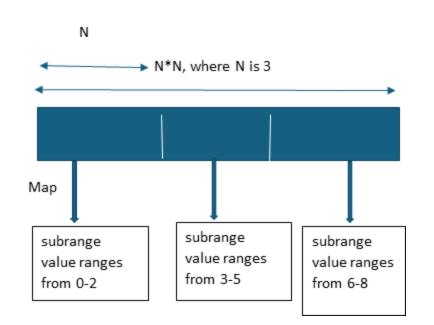
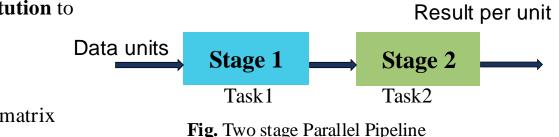



Fig. 2 depicts one possible implementation of the map pattern.

CHOLESKY PARALLELISATION STRATEGY- PARALLEL PIPELINE

After initialization, we used Parallel pipeline for computing **Foward substitution** to get Y, **backward substitution** to get X(inverse).

We use 2 main stages in the Parallel pipeline implementation. **Stage 1** : Generates column indices col represents the column of the inverse matrix A^-1

Stage 2: Compute the inverse of the given matrix by doing forward and backward substitution by getting the column indices from stage1, and it will store the inverse

IMPLEMENTATION OF PIPELINE

The pipeline implementation involves stage-2 pipeline. The stage-1 is serial stage which generates col indices, that represents the current column to process. The stage-2 is parallel stage , it takes the column index (col) from Stage 1 and performs the calculations to compute the inverse of that column using forward and backward substitution. Combine the work of forward substitution, backward substitution, and assignment to the inverse matrix A^-1 in a single stage. Col 1 - solve L* y = e , col2-solve L^T*X = Y, col 3 - store X in the col(column of A^-1).

CHOLESKY RESULTS TIME STAMP ANALYSIS OF SERIAL AND PARALLEL

		SIZE (number of rows and columns)	Computation time(ms)		SIZE(number of rows and columns)	Computation time(ms)
	100	3		100	1	
1 4 11		500	111	_	500	40
Intell_TBB- parallel_for	750	168	Intell_TBB-	750	137	
	1000	330	parallel_pip	. 1000	313	
	1500	1094	eline	1500	1039	
		2000	2675		2000	3015

Programming methods for size=2000	Time to compute inverse (in seconds) and speed improvement via parallelization (in %)
Sequential	17180
Intel-TBB- Parallel_for	2675 (84%)
Intol TBB Parallol pipolino	3015 (82%)

RESULT- SEQ, PARALLEL, PIPELINE CHOLESKY DECOMPOSITION MATRIX INVERSION- TERMINAL OUTPUT FOR SIZE 2000

revathi@revathi-Latitude-3510: ~/home/revathi/Projec

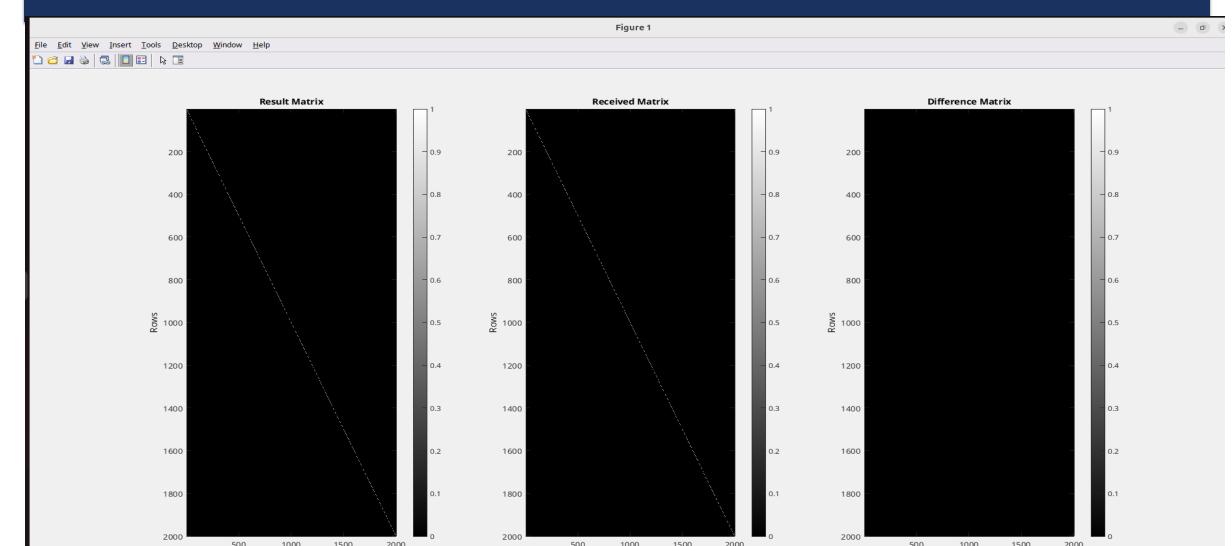
revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_seq\$ make clean rm -f seq *.o core revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_seq\$ make all g++ -O3 -Wall -c seg fun.cpp -lm g++ -O3 -Wall -o seq seq.cpp seq_fun.o -lm revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_seq\$./seq Enter the size of the matrix: 2000 The inverse of the matrix A has been computed. Elapsed time: 17816 ms revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_seq\$ cd .. revathi@revathi-Latitude-3510:~/home/revathi/Project\$ cd cholesky_para/ revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_para\$ make clean rm -f tbb_for *.o core revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_para\$ make all g++ -O3 -Wall -std=c++11 -c tbb_fun.cpp -ltbb q++ -O3 -Wall -std=c++11 tbb for.cpp tbb fun.o -ltbb -o tbb for revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_para\$./tbb_for Enter the size of the matrix: 2000 The inverse of the matrix A has been computed. Elapsed time: 2684 ms revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_para\$ cd ... revathi@revathi-Latitude-3510:~/home/revathi/Project\$ cd cholesky pipeline/ revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky pipeline\$ make clean rm -f pipe *.o core revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_pipeline\$ make all g++ -O3 -Wall -std=c++11 -c pipe fun.cpp -ltbb -lm g++ -O3 -Wall -std=c++11 pipe.cpp pipe_fun.o -lm -ltbb -o pipe revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_pipeline\$./pipe Enter the size of the matrix: 2000 The inverse of the matrix A has been computed successfully. Elapsed time: 2563 ms revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_pipeline\$ cd ..

RESULT CHOLESKY DECOMPOSITION MATRIX INVERSION- TERMINAL OUTPUT FOR SIZE 3

revathi@revathi-Latitude-3510: ~/home/revathi/Pro

rm -f tbb_for *.o core revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_para\$ make all g++ -O3 -Wall -std=c++11 -c tbb_fun.cpp -ltbb g++ -O3 -Wall -std=c++11 tbb_for.cpp tbb_fun.o -ltbb -o tbb_for revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_para\$./tbb_for Enter the size of the matrix: 3 Input matrix (A): 94 7 8 6 64 6 40 8 The inverse of the matrix A has been computed. Elapsed time: 0 ms Inverse matrix (A_inverse): -0.00100055 -0.00202698 0.0108853 -0.00100055 0.0159398 -0.00219086 -0.00202698 -0.00219086 0.025734 Identity matrix (A * A_inverse): Θ Θ 1 Θ Θ 1 Θ Θ 1 revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_para\$./tbb for Enter the size of the matrix: 100 The inverse of the matrix A has been computed. Elapsed time: 3 ms revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_para\$./tbb_for Enter the size of the matrix: 500 The inverse of the matrix A has been computed. Elapsed time: 111 ms revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky para\$./tbb for Enter the size of the matrix: 750 The inverse of the matrix A has been computed. Elapsed time: 168 ms revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_para\$./tbb for Enter the size of the matrix: 1000 The inverse of the matrix A has been computed. Elapsed time: 330 ms revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_para\$./tbb for Enter the size of the matrix: 1500 The inverse of the matrix A has been computed. Elapsed time: 1094 ms revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_para\$./tbb_for Enter the size of the matrix: 2000 The inverse of the matrix A has been computed. Elapsed time: 2675 ms revathi@revathi-Latitude-3510:~/home/revathi/Project/cholesky_para\$

J.F.L


CHOLESKY DECOMPOSITION MATRIX INVERSION-SEQUENTIAL

			MATLAB R2024b - academ	cuse				- • •
HOME PLOTS APPS EDITOR	PUBLISH VIEW						ラ ൙ 📴 😨 💿 Search Documentation	n 🔎 🜻 Revathi
Image: Compare with the second sec	Refactor ► CODE ANALYZE	Section Break Run 🔄 Run and Advance tion 🔄 Run to End SECTION	Run Step Stop					
Editor - /home/revathi/home/revathi/Project/cholesky_seq				•	×	Workspace		
final.m x 41 resultMatrix = A * A final.seq.m x 43 % Display the result lab2_for.m x 44 if n <= 5	t matrix for small sizes f Matrix and Its Inverse (Should ix); matrix to a binary file	be Identity Matrix):');	•		A A_inverse ans b differenceMatrix	Value Value 2000x2000 double 2000x2000 double 2000x1 double 2000x1 double 3 2000x2000 double 3 3 1	
Command Window						n receivedFilename	2000	
<pre>>> final_seq Enter the size of the matrix (n x n): 3 Input Matrix (A): 4.5222 0.9459 0.7467 0.9459 4.1155 1.1329 0.7467 1.1329 4.3622 Inverse Matrix (A_inverse): 0.2355 -0.0463 -0.0283 -0.0463 0.2708 -0.0624 -0.0283 -0.0624 0.2503</pre>							2000x2000 double 2000x2000 double	
Product of Matrix and Its Inverse (Should be 1.0000 0.0000 0 0.0000 1.0000 0 0 0 1.0000	≀ Identity Matrix):							
<pre>Sum of Absolute Differences: 0.000000000000 >> final_seq Enter the size of the matrix (n x n): 500 Sum of Absolute Differences: 0.000000000000 >> final_seq Enter the size of the matrix (n x n): 750 Sum of Absolute Differences: 0.000000000000 >> final_seq Enter the size of the matrix (n x n): 1000 Sum of Absolute Differences: 0.000000000000 >> final_seq Enter the size of the matrix (n x n): 1500 Sum of Absolute Differences: 0.000000000000 >> final_seq Enter the size of the matrix (n x n): 1200 Sum of Absolute Differences: 0.000000000000 >> final_seq Enter the size of the matrix (n x n): 2000 Sum of Absolute Differences: 0.000000000000 Af >> </pre>								

CHOLESKY DECOMPOSITION MATRIX INVERSION-PARALLEL

MATLAB R2024b - academic use									- 0			
HOME PLOTS	APPS EDITOR	PUBLISH	VIEW							ʻə 🖨 🔁 😧 👽 Se	earch Documentation	🔎 🜻 Rev
ew Open Save — Print - FILE	Go To WAVIGATE	Refactor ▼ Fin ▼ CODE		n Run and Advance		Step Stop						
🔶 🔁 🔽 💭 🗀 / 🕨 home 🕨	revathi 🕨 home 🕨 revath	ni 🕨 Project 🕨 cholesky	_para									
Editor - /home/revathi/home/rev	athi/Project/cholesky_par	a/final_Para.m	,,	·· ···· ···· ··· ··· ··· ··· ··· ···				▼ ×	Workspace			
<pre>mmand Window >> final_Para Enter the size of the matinput Matrix (A): 4.4407 1.2700 1.2700 1.2700 4.2255 0.1.0458 0.9058 1.0458 0.9058 1.0458 0.9058 1.0458 0.9058 1.0458 0.2567 -0.0655 0.2659 -0.0655 0.2659 -0.06543 -0.0647 0.0543 -0.0447 0.0543 -0.0447 0.0000 -0.0000 1.0000 0.0000 -0.0000 1.0000 0.0000 </pre>	trix (n x n): 3 1.0458 0.9058 3.8525 a): 0.0543 0.0447 0.2848 s Inverse (Should be 0 0.0000 trix (n x n): 100 trix (n x n): 100 trix (n x n): 500 trix (n x n): 500 trix (n x n): 750 trix (n x n): 750 trix (n x n): 750 trix (n x n): 1000 trix (n x n): 1000		:						Name \angle A A A, inverse ans b differenceMatrix fileID filename i identity L n receivedFilename receivedMatrix sumAbsoluteDif threshold x y	2000x2000 double 2000x2000 double		

LU DECOMPOSITION MATRIX INVERSION-PARALLEL

Advantages of using parallelization techniques

Improved Performance

Scalability

Resource Utilization

Applications

Machine Learning

Computer Graphics

Signal Processing

Π.

CONCLUSION

We conclude that our work shows how parallel programming is used to increase the productivity of matrix inversion operations. Significant processing time savings are achieved through parallelization, underscoring the advantages of concurrent execution over several threads. Our work highlights how parallel programming can revolutionize matrix inversion processing capabilities and how important it is to improve performance in challenging computational jobs.

REFERENCES

1) "ECE-5772-Lecture notes unit 4-Map Pattern"- https://moodle.oakland.edu/pluginfile.php /9501748/mod_resource/content/5/Notes% 20-%20Unit% 204.pdf

2) "Matrix Row Operations," Khan Academy. Available: <u>https://www.khanacademy.org/math/algebra-home/alg-matrices/alg-elementary-matrix-row-operations/a/matrix-row-operations</u>

3) "Matrix Inversion and Eigenvalue,"

SRM Institute of Science and Technology. Available: <u>https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/2018</u> MatrixInversionandeigenvalue.pdf

4) Y. Zhang, "LU Decomposition," CAAM, Rice University, Fall 2009. Available: https://www.cmor-faculty.rice.edu~zhang/caam335/F09/handouts/lu.pdf

5)A. Ziefert, "Cholesky Decomposition," Matrix Algebra, Oct. 13, 2020. [Online].Available: <u>https://zief0002.github.io/matrix-</u> algebra/cholesky-decomposition.html

6) "Triangular matrix," Wikipedia, The Free Encyclopedia. [Online]. Available: <u>https://en.wikipedia.org/wiki/Triangular_ma</u>trix. [Accessed: Nov. 14, 2024].

DONE BY RAMYA RAJARAMAN REVATHY SEKAR

UNDER GUIDANCE OF PROF.DANIEL LLAMOCCA

DEMO

THANK YOU

ANY QUESTIONS?