
ECE-5772- HIGH PERFORMANCE EMBEDDED PROGRAMMING

ENHANCING MATRIX INVERSION EFFICIENCY

A PARALLEL IMPLEMENTATION OF LU

DECOMPOSITION AND CHOLESKY DECOMPOSITION

INTRODUCTION

Matrix inversion is a critical computational task in various

scientific and engineering applications, such as embedded

systems, signal processing, control systems, machine

learning, real-time systems etc.,

We have implemented two matrix inversion algorithms-

Cholesky and LU decomposition in sequential and

parallel.

The significant performance enhancements are attained

through parallel programming.

Inverse of 1, 1, 1

4, 3, −1

 3, 5, 3

7/5, 1/5,−2/5

 is -3/2, 0, 1/2

 11/10, -1/5, -1/10

SOFTWARE REQUIREMENTS

PROGRAMMING LANGUAGE: C,C++

LANGUAGE
PARALLELISATION STRATEGY:

Intel TBB –Parallel_for

LU DECOMPOSITION MATRIX INVERSION

An LU decomposition of a matrix A is the

product of a lower triangular matrix(L) and an

upper triangular matrix(U) that is equal to A.

A=LU;

LU DECOMPOSITION MATRIX INVERSION-ALGORITHM

EXPLANATION

1 0 0

 0 1 0

 0 0 1
L= U=

Row operation to get L and U matrices:

R2=R2-(4*R1); R3=R3-(3*R1);R3=R3-(-2*R2);-->gives U matrix

Copy of

input

matrix

1, 1, 1

4, 3, −1

3, 5, 3

Put this multiplier in corresponding L matrix –gives L matrix

1 0 0

 4 1 0

 3 -2 1
L= U=

1, 1, 1

0, −1, -5

0, 0, -10

A=L*U

LU DECOMPOSITION MATRIX INVERSION--ALGORITHM
EXPLANATION

FORWARD SUBSTITUTION (solve from top to bottom)
L*d=I; to get d, where L- lower triangular matrix, d-intermediate matrix, I-

identity matrix

Solve column by column to compute d matrix.

BACKWARD SUBSTITUTION (solve from bottom to

top)
U*X=d; to get X, where U- upper triangular matrix, X-inverse matrix, d-

intermediate matrix(received from forward substitution)

Solve column by column to compute X matrix.

VERIFICATION (verified using MATLAB)
A*X=I; where A- input matrix, X-inverse of A, I- Identity matrix.

Identity matrix computed from c code is written to a binary file and this

binary file is compared with the identity matrix generated by the

MATLAB code and the difference between those is displayed.

A*X=I; A=L*U; (LU)*X=I; U*X=d; L*d=I.

1 0 0

 4 1 0

 3 -2 1
L=

d00 d01 d02

 d10 d11 d12

 d20 d21 d22

d=

1 0 0

 0 1 0

 0 0 1

I=

1 1 1

 0 -1 -5

 0 0 -10
U=

x00 x01 x02

 x10 x11 x12

 x20 x21 x22

x=

1 0 0

 -4 1 0

 -11 2 1

d=

1 1 1

 4 3 -1

 3 5 3
A*X=

7/5, 1/5,−2/5

is -3/2, 0, 1/2

11/10, -1/5, -1/10

1 0 0

= 0 1 0

 0 0 1

*

RESULTS OF TIME STAMP ANALYSIS OF

SEQUENTIAL IMPLEMENTATION

Slower processing speed

Limited Real time
application usage

Scalability issues

Inefficient Resource
Utilization

SIZE(number of rows and

columns)

Computation time(in

milliseconds)

 100 6

500 297

1000 2428

1500 9499

1750 18699

2000 42017

PARALLELISATION STRATEGY-MAP PATTERN

Fig. 2 depicts one possible implementation of the map pattern.

After initialization, we used Intel TBB parallel_for (map pattern) for decomposition of

A into L and U, Forward substitution to get d, backward substitution to compute

X(output).

DECOMPOSING A INTO L AND U: parallel_for-row

FORWARD AND BACKWARD SUBSTITUTION: parallel_for-column

For forward, backward substitution, main task may get divided into 3 tasks (theses 3 tasks

will run in parallel however each task will run sequentially inside it), so each task may

handle each column values to compute d, X from Ld=I; UX=d;

THREAD SAFE IMPLEMENTATION

where L, I- for forward and U, d-for backward, matrices are shared among 3 tasks, but these tasks

won't modify/update the L, I in forward and U, d in backward, it will just read values from L and I,

and U and d to compute d [3][3] and X [3][3]so that we can prevent the race condition.

For decomposing A into L and U, by using map pattern we have parallelized

the rows to run in a parallel way in order to simultaneous update the values

of L and U matrices.

Map pattern will divide the rows/columns

into different subranges and it will assign

these subranges into different threads and

the scheduler will assign these different

threads into different cores available in the

system

PARALLELISATION STRATEGY-PARALLEL PIPELINE

Fig. 2 depicts one possible implementation of the parallel pipeline

After initialization and decomposition of A into L and U, we used Intel TBB parallel pipeline , for Forward substitution to get d, and

backward substitution to compute X(output).

PIPELINE IMPLEMENTATION

We have implemented the forward and backward substitution by using

parallel pipeline.

• First stage: Giving columns indices as input

• Second stage: Forward substitution to compute intermediate matrix(d)

• Third stage: Backward substitution to compute inverse matrix(x) using

intermediate matrix(d) from forward substitution.

We have given number of token as 16, in the first stage 16 columns indices will be processed and

given as an input to the second stage where the forward substitution will solve 16 columns

in parallel to compute the intermediate matrix (d) and once the each columns is processed it will

be send as an input to the final stage where backward substitution takes place to compute inverse

matrix(x) using intermediate matrix(d) values from previous stage like this till the column values

raeches the size of given matrix this process will continue to compute the inverse.

Stage-1

Stage-2

Stage-3

RESULTS

TIME STAMP ANALYSIS OF SERIAL AND PARALLEL

SIZE (number of

rows and columns)

Computation time(ms)

 100 2

500 63

1000 877

1500 4295

1750 8140

2000 14378

SIZE(number

of rows and columns)

Computation time(ms)

 100 5

500 71

1000 841

1500 4274

1750 8126

2000 14257

Programming methods for size=2000 Time to compute inverse

(in milliseconds) and speed improvement via

parallelization (in %)

Sequential 42017

Intel-TBB- Parallel_for 14378(65%)

Intel-TBB- Parallel_pipeline 14257(66%)

Intell_TBB-

parallel_for Intell_TBB-

parallel_pip

eline

RESULT
LU DECOMPOSITION MATRIX INVERSION- TERMINAL OUTPUT FOR SIZE

2000

RESULT
LU DECOMPOSITION MATRIX INVERSION- TERMINAL OUTPUT FOR SIZE

3

MATLAB RESULT

LU DECOMPOSITION MATRIX INVERSION-SEQUENTIAL

MATLAB RESULT

LU DECOMPOSITION MATRIX INVERSION-PARALLEL

MATLAB RESULT
LU DECOMPOSITION MATRIX INVERSION-PARALLEL

CHOLESKY DECOMPOSITION MATRIX INVERSION

A cholesky decomposition is a mathematical

method used to decompose a symmetric,

positive definite matrix A in to the product of a

lower triangular matrix(L) and its transpose L^T.

A=L* L^T;

CHOLESKY DECOMPOSITION MATRIX INVERSION ALGORITHM STEPS

Diagonal values must be positive

• symmetric and positive definite matrix.

STEPS TO FOLLOW

Symmetric matrix A = A^T (A[i][j]=A[j][i])

Positive-Definite matrix

CHOLESKY DECOMPOSITION ALGORITHM EXPLANATION

Decompose A = L * L^T

Compute the diagonal element L[0][0], where i==j

• Take A[0][0]=4 , Since it's the diagonal element, calculate:

• L[0][0]=sqrt(A[0][0]) =sqrt(4) =2

Compute the Off -diagonal element L[1][0], where i > j

• L[1][0] = A[1][0] - sum / L[0][0] ,

• Here, sum - sum of product of already computed elements of col1 and

row1

• L[1][0] = 12 – 0 / 2 => 6

Compute the Off -diagonal element L[2][0], where i > j

• L[2][0] = A[2][0] - sum / L[0][0] ,

• L[2][0] = -16 – 0/2 => -8

Compute the diagonal element L[1][1]

Where, Sum - sum of squares of already calculated value in the same row

L[1][1] = sqrt(A[1][1] - L[1][0] * L[1][0])

sqrt(37 - (6*6)) = sqrt(1) =>1

Compute the Off -diagonal element L[2][1], where i > j

L[2][1] = A[2][1] - sum / L[1][1] , where sum = L[2][0]*L[1][0]

L[2][1] = - 43 - (-8 * 6) = - 43 + 48 / 1 => 5

Similarly for L[2][2] -

sqrt(A[2][2] - L[2][0]* L[2][0] + L[2][1]*L[2][1]

sqrt(98-(8*8) + (5*5)) = sqrt(98 - 89) = sqrt(9) => 3

Diagonal computation(Serial)

• Sequential dependency & Smaller workload

• Numerical stability considerations Therefore ,

CHOLESKY DECOMPOSITION MATRIX INVERSION ALGORITHM
EXPLANATION

FORWARD SUBSTITUTION (solve from top to bottom)
L*Y=B; to get Y, where L- lower triangular matrix, Y-intermediate matrix, B-

Identity matrix. Solve column by column to compute Y matrix.

BACKWARD SUBSTITUTION (solve from bottom to

top)
L^T*X=Y; to get X, where L^T- Transpose matrix, X-inverse matrix, Y-

intermediate matrix(received from forward substitution)

Solve column by column to compute X matrix.

VERIFICATION (verified using MATLAB)
A*X=I; where A- input matrix, X-inverse of A, I- Identity matrix.

Identity matrix computed from c code is written to a bof file and this bof

file is compared with the identity matrix generated by the MATLAB code

bof file , and the difference between those will displayed.

A = L* L^T ; L* Y = B; L^T * X = Y ; A*X=I;

2 0 0

 6 1 0

 -8 5 3
L=

y00 y01 y02

 y11 y12 y13

 y21 y22 y23

y=

1 0 0

 0 1 0

 0 0 1

b=

2 6 -8

 0 1 5

 0 0 3
L^t=

x00 x01 x02

 x11 x12 x13

 x21 x22 x23

x=

1 /2 0 0

 -3 1 0

 19/3 -5/3 1/3
y=

4 12 -16

 12 37 -43

 -16 -43 98
A*X=

1/18 , -122/9, 19/9

 -62/9, 34/9,-5/9

 19/9 , -5/9, 1/9

1 0 0

= 0 1 0

 0 0 1

*

CHOLESKY SEQUENTIAL IMPLEMENTATION

Long Execution Time

Poor Fault Tolerance

Limited Throughput

SIZE(number of rows and

columns)

Computation time(ms)

 100 5

500 338

750 988

1000 2217

1500 7104

2000 17180

CHOLESKY PARALLELISATION STRATEGY-MAP PATTERN

Fig. 2 depicts one possible implementation of the map pattern.

After initialization , we used Intel TBB parallel_for (map pattern) for computing

cholesky decomposition, Foward substitution to get Y, backward substitution to

get X(inverse).

To decompose A in to L and L^T , we used row wise parallelization to compute the

off-diagonal elements. Each thread will assigned to one or more rows and processed

simultaneously.

For computing the inverse of matrix, main task may get divided into 3 tasks (these 3

tasks will run in parallel, however each task will run sequentially inside it), so each

task may handle each column values to compute Y, X from Ly=b; L^T*X= y;

THREAD SAFE IMPLEMENTATION

where L, b- for forward and L^T, Y-for backward, matrices areshared among 3 tasks,

but these tasks won't modify/update the L, b in forward and L^T, Y in backward, it will

just read values from L and b, and L^T and Y to compute Y [3][3] and X [3][3]so that

we can prevent the race condition.

CHOLESKY PARALLELISATION STRATEGY- PARALLEL PIPELINE

After initialization , we used Parallel pipeline for computing Foward substitution to

get Y, backward substitution to get X(inverse).

We use 2 main stages in the Parallel pipeline implementation.

Stage 1 : Generates column indices col represents the column of the inverse matrix

A^-1

Stage 2: Compute the inverse of the given matrix by doing forward and backward

substitution by getting the column indices from stage1, and it will store the inverse

IMPLEMENTATION OF PIPELINE

The pipeline implementation involves stage-2 pipeline. The stage-1 is serial stage which

generates col indices, that represents the current column to process. The stage-2 is

parallel stage , it takes the column index (col) from Stage 1 and performs the

calculations to compute the inverse of that column using forward and backward

substitution. Combine the work of forward substitution, backward substitution, and

assignment to the inverse matrix A^-1 in a single stage. Col 1 - solve L* y = e , col2-

solve L^T*X = Y, col 3 - store X in the col(column of A^-1).

Stage 1 Stage 2
Data units

Result per unit

Task1 Task2

Fig. Two stage Parallel Pipeline

CHOLESKY RESULTS

TIME STAMP ANALYSIS OF SERIAL AND PARALLEL

SIZE (number of

rows and columns)

Computation time(ms)

 100 3

500 111

750 168

1000 330

1500 1094

2000 2675

SIZE(number

of rows and columns)

Computation time(ms)

 100 1

500 40

750 137

1000 313

1500 1039

2000 3015

Programming methods for size=2000 Time to compute inverse

(in seconds) and speed improvement via

parallelization (in %)

Sequential 17180

Intel-TBB- Parallel_for 2675 (84%)

Intel-TBB- Parallel_pipeline 3015 (82%)

Intell_TBB-

parallel_for Intell_TBB-

parallel_pip

eline

RESULT- SEQ, PARALLEL,PIPELINE
CHOLESKY DECOMPOSITION MATRIX INVERSION- TERMINAL OUTPUT FOR SIZE

2000

RESULT
CHOLESKY DECOMPOSITION MATRIX INVERSION- TERMINAL OUTPUT FOR

SIZE 3

MATLAB RESULT

CHOLESKY DECOMPOSITION MATRIX INVERSION-SEQUENTIAL

MATLAB RESULT

CHOLESKY DECOMPOSITION MATRIX INVERSION-PARALLEL

MATLAB RESULT
LU DECOMPOSITION MATRIX INVERSION-PARALLEL

Advantages of using parallelization techniques

Improved Performance

Scalability

Resource Utilization

Applications

Machine Learning

Computer Graphics

Signal Processing

CONCLUSION

We conclude that our work shows how parallel programming is used to increase the

productivity of matrix inversion operations. Significant processing time savings are

achieved through parallelization, underscoring the advantages of concurrent execution over

several threads. Our work highlights how parallel programming can revolutionize matrix

inversion processing capabilities and how important it is to improve performance in

challenging computational jobs.

REFERENCES

1) “ECE-5772-Lecture notes unit 4-Map Pattern”- https://moodle.oakland.edu/pluginfile.php /9501748/mod_resource/content/5/Notes% 20-%20Unit%204.pdf

2) "Matrix Row Operations," Khan

Academy. Available: https://www.khanacademy.org/math/algebra-home/alg-matrices/alg-elementary-matrix-row-operations/a/matrix-row-operations

3) "Matrix Inversion and Eigenvalue,"

SRM Institute of Science and Technology. Available: https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/2018 MatrixInversionandeigenvalue.pdf

4) Y. Zhang, "LU Decomposition," CAAM, Rice University, Fall 2009. Available: https://www.cmor-faculty.rice.edu~zhang/caam335/F09/handouts/lu.pdf

5)A. Ziefert, "Cholesky Decomposition,"

Matrix Algebra, Oct. 13, 2020. [Online].Available: https://zief0002.github.io/matrix-

algebra/cholesky-decompostion.html

6) "Triangular matrix," Wikipedia, The Free

Encyclopedia. [Online]. Available: https://en.wikipedia.org/wiki/Triangular_ma

trix. [Accessed: Nov. 14, 2024].

https://www.khanacademy.org/math/algebra-home/alg-matrices/alg-elementary-matrix-row-operations/a/matrix-row-operations
https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/2018
https://www.cmor-faculty.rice.edu~zhang/caam335/F09/handouts/lu.pdf
https://zief0002.github.io/matrix-
https://en.wikipedia.org/wiki/Triangular_ma

DONE BY

RAMYA RAJARAMAN

REVATHY SEKAR

UNDER GUIDANCE OF

PROF.DANIEL LLAMOCCA

DEMO

ANY QUESTIONS?

THANK YOU

	Slide 1
	Slide 2: INTRODUCTION
	Slide 3: SOFTWARE Requirements
	Slide 4: LU DECOMPOSITION MATRIX INVERSION
	Slide 5: LU DECOMPOSITION MATRIX INVERSION-ALGORITHM EXPLANATION
	Slide 6: LU DECOMPOSITION MATRIX INVERSION--ALGORITHM EXPLANATION
	Slide 7: RESULTs of Time Stamp analysis of SEQUENTIAL IMPLEMENTATION
	Slide 8: PARALLELISATION STRATEGY-MAP PATTERN
	Slide 9: PARALLELISATION STRATEGY-parallel pipeline
	Slide 10: RESULTS Time Stamp analysis of serial and parallel
	Slide 11: RESULT LU DECOMPOSITION MATRIX INVERSION- tERMINAL OUTPUT FOR SIZE 2000
	Slide 12: RESULT LU DECOMPOSITION MATRIX INVERSION- tERMINAL OUTPUT FOR SIZE 3
	Slide 13: MATLAB RESULT LU DECOMPOSITION MATRIX INVERSION-SEQUENTIAL
	Slide 14: MATLAB RESULT LU DECOMPOSITION MATRIX INVERSION-PARALLEL
	Slide 15: MATLAB RESULT LU DECOMPOSITION MATRIX INVERSION-PARALLEL
	Slide 16: Cholesky decomposition MATRIX INVERSION
	Slide 17: Cholesky decomposition MATRIX INVERSION aLGORITHM sTEPS
	Slide 18: Cholesky decomposition ALGORITHM EXPLANATION
	Slide 19: CHOLESKY DECOMPOSITION MATRIX INVERSION ALGORITHM EXPLANATION
	Slide 20: cholesky SEQUENTIAL IMPLEMENTATION
	Slide 21: Cholesky PARALLELISATION STRATEGY-MAP PATTERN
	Slide 22: Cholesky PARALLELISATION STRATEGY- parallel pipeline
	Slide 23: Cholesky RESULTS Time Stamp analysis of serial and parallel
	Slide 24: RESULT- Seq, Parallel,Pipeline cholesky DECOMPOSITION MATRIX INVERSION- tERMINAL OUTPUT FOR SIZE 2000
	Slide 25: RESULT cholesky DECOMPOSITION MATRIX INVERSION- tERMINAL OUTPUT FOR SIZE 3
	Slide 26: MATLAB RESULT cholesky DECOMPOSITION MATRIX INVERSION-SEQUENTIAL
	Slide 27: MATLAB RESULT cholesky DECOMPOSITION MATRIX INVERSION-Parallel
	Slide 28: MATLAB RESULT LU DECOMPOSITION MATRIX INVERSION-PARALLEL
	Slide 29: Advantages of using parallelization techniques
	Slide 30: Applications
	Slide 31: CONCLUSION
	Slide 32: REFERENCES
	Slide 33
	Slide 34
	Slide 35

