

 ENHANCING MATRIX INVERSION EFFICIENCY

 A PARALLEL IMPLEMENTATION OF CHOLESKY AND LU
 DECOMPOSITION ALGORITHMS

Ramya Rajaraman, Revathi Sekar

Dept of Electrical and computer engineering
School of Engineering and Computer Science
 Oakland University, Rochester Hills, Michigan.

 emails: ramyarajaraman@oakland.edu, rsekar@oakland.edu

ABSTRACT
Matrix inversion is a critical computational
task in various scientific and engineering
applications, such as embedded systems,
signal processing, control systems, machine
learning, real-time systems etc., Traditional
sequential matrix inversion techniques can
be computationally intensive, especially
with large matrices, leading to significant
delays, more resource consumption, and
inefficiencies in performance-critical
systems. In this project, we implemented
parallelized versions of the two matrix
inversion decomposition algorithms-
Cholesky and LU decomposition algorithms
and we achieved performance efficiency
through different Intell TBB parallelization
strategies, which makes it suitable for using
it in a real time applications. Through this
parallelization techniques, scalability issue
has been resolved, which helped in making
use of all the available resources.
Keywords- Parallel Programming,
Performance Optimization, Matrix
Inversion, LU and Cholesky
Decomposition, Multithreading,

Sequential vs. Parallel Processing,
Performance Comparison.
I. Introduction

Our project focus on applying the parallel
computing to two important matrix
inversion methods - LU and Cholesky
decomposition. we explained what these
algorithms are, how it works, and why they
are useful for solving equations and inverse
matrices. Due to limitations of Sequential

approach, which solve problems one step at
a time, become slow when working with
large matrices and why we need a quicker
approach. By applying Parallelization in LU
and Cholesky decomposition. The tasks will
get divided into multiple threads or
subranges and these threads are assigned to
different cores present in the system to get
processed simultaneously to speed up the
process. We also compared the speed of the
parallel program with the Sequential ones
and measured how much improvement we
can achieve. The main motivation is to make
solving large matrix problems faster and
more efficient. As technology advances and
the size of data grows, traditional sequential
methods become inefficient and slow when
dealing with real time applications. By
implementing parallelization, we can handle
these larger problems in less time, making
important applications like simulations, data
analysis, and machine learning more
efficient. By improving the speed of LU and
Cholesky decompositions, this project can
save time and computing resources in
industries like data science, engineering, and
research. Faster computations lead to
improved performance in systems that
handle complex math, allowing faster results
in real-world tasks which will be suitable for
real time applications as well.

We have implemented our project with LU
and Cholesky decomposition inverse
algorithms by using different parallelization
frameworks like Intel TBB Parallel for and
Parallel Pipeline that we have learned in this

mailto:ramyarajaraman@oakland.edu
mailto:rsekar@oakland.edu

course in order to parallelize our algorithms
to achieve performance efficiency.

Parallel programming is used in many
applications to make tasks faster and more
efficient, especially when dealing with
complex computations. In Graphics
Transformation, matrix inversion is used to
compute transformations in 3D graphics,
such as perspective corrections and rigid
body motions. In cybersecurity, matrix
inversion plays a crucial rule for encryption
and decryption techniques. In autonomous
Vehicles, the concept of Kalman filter is
used for object detection, lanes detection
etc., matrix inversion plays a significant role
in this Kalman filter, so by paralleling this
matrix inversion algorithms to achieve
performance efficiency will make it suitable
for using it in real time systems.

 II. METHODOLOGY
 A. LU DECOMPOSITION MATRIX
INVERSION
An LU decomposition of a matrix A is the
product of a lower triangular matrix and an
upper triangular matrix that is equal to A.
A=LU [1]; A -Input Matrix L-Lower
triangular matrix - A square matrix in which
all the elements above the main diagonal are
zero. In LU Decomposition matrix
inversion, the main diagonal elements in
lower triangular matrix being equal to 1.U-
Upper triangular matrix- A square matrix in
which all the elements below the main
diagonal are zero. To find the inverse of a
matrix using LU decomposition then the
input matrix needs to be square (number of
rows and columns should be equal) and a
non-singular matrix (determinant of a input
matrix shouldn’t be zero) By using LU, we
can find inverse of A through forward and
backward substitution method.

 Fig: Flowchart of LU Decomposition

 LU DECOMPOSITION MATRIX

INVERSION- ALGORITHM
EXPLANATION
 A-Input matrix, X- Inverse of A
matrix, I-identity matrix (diagonal elements
are 1).

A*X=I.
For instance, let's consider A, I as 3*3
matrix.

Decompose A into L and U.
Find L, U using Gaussian elimination
technique. The steps are as follows,
 Step 1: Do Row operations [4], in row 2
and row 3 using row 1 to get the first
element of row 2 and row 3 as 0, and while
doing this, substitute the number what we
used to get first element of row 2 and 3 as
zero using row 1, into the first element of

start

intialize input A, identity I and inverse matrices
X.

decompose A into L and U using row
operation

A.X=I. Substitute A=LU, LUX=I;Substitute
UX=d;Ld=I;UX=d

compute Ld=I using forward substitution and
UX=d using backward substitution.

check A.X=I

stop

lower triangular matrix row 2 and 3.
 Step 2: Do same Row operation [4], in row
3 using row 2 to get the second element of
row 3 as 0, and while doing this, substitute
the number what we used to get second
element of row 3 as zero, into lower
triangular matrix row3 second element.
Step 3: By doing step 1 and 2, we can get
upper and lower triangular matrix.

Once we compute L and U, we can use this
to find inverse of matrix A.
A.X=I; where X is inverse of A
Substitute A=LU, in above equation,
LU.X=I.
LUX=I; Let's assume UX=d (solve using
backward substitution method), then Ld=I
[3] (solve using forward substitution
method); where d is also a 3*3matrix which
is unknown so far, we can find d matrix
using L and I.
Once we find d matrix, we can use d to
solve the equation UX=d [3]; U and d are
known, we can use this to compute X, where
X is also 3*3 matrix used to store result
(which is inverse of input matrix).
FORWARD SUBSTITUTION METHOD
To compute Ld=I[3], we can use this
forward substitution method (solve the
linear equation from top to bottom), to split
the I and d (3*3 matrix) into 3 columns,
where the coefficients of first row of L
(1*3), getting multiplied with first column
of d (3*1) and these Ld is equals to first
column of I (1*3) i.e.) [1 0 0] to compute
first column of d matrix value [1].
Repeat the above step for each row of L
with corresponding column of unknown d
by using each column of I, to compute d
matrix.
BACKWARD SUBSTITUTION
METHOD

To compute UX=d [3], we can use this
backward substitution method (solve the
linear equation from bottom to top), to split
the d and X (3*3) into 3 columns, where the
the coefficients of first row of U (1*3)
getting multiplied with last column of X

(3*1) and these UX is equals to last column
of d (1*3) to compute X matrix last column
values [1].
Repeat the above step for each row of U
with corresponding column of unknown X
by using each column of I, to compute X
matrix.
So, by using the above Forward and
backward substitution, we can find the
inverse of input matrix, which is getting
stored in X matrix.
Finally, we can check our output by
multiplying input matrix with the X
(resultant matrix) as a result we should get I-
identity matrix.
B. CHOLESKY DECOMPOSTION

MATRIX INVERSION

The Cholesky decomposition, is a process of
breaking down of positive-definite matrix
into the product of a lower triangular matrix
and its conjugate transpose, which is
important for quick numerical solutions in
linear algebra. The goal of Cholesky
decomposition is to find a matrix L such
that: A = L*L(pow)T. where A is the
original matrix (symmetric and positive-
definite), L is a lower triangular matrix (a
matrix where all elements above the
diagonal are zero). L(pow)T is the transpose
of matrix L. The key points are to start with
a symmetric, positive-definite matrix A
(input matrix). The matrix L is lower
triangular, means all elements above the
main diagonal are zero. calculate the lower
triangular matrix L, such that
A=L×L(pow)T. Once we have the lower
triangular matrix L from Cholesky
decomposition, we can find the inverse of A
by using Forward and Backward
substitution.

Fig: Flowchart of Cholesky
Decomposition

CHOLESKY DECOMPOSTION
ALGORITHM EXPLANATION

A – Input matrix, L – Lower Triangular
matrix, L(pow)T – Transpose of matrix L

For example, consider A matrix – 3*3
matrix, Factorized A into L and L(pow)T.

Steps to find the Lower Triangular
Matrix as follows

Step 1: The input matrix A must be
symmetric (A=A(pow)T) and positive-
definite (all eigenvalues are positive). A
positive definite matrix is required in
Cholesky decomposition because it ensures
that all values along the diagonal of the
resulting lower triangular matrix L are real,
positive numbers. To check if this matrix is
positive definite, test whether x(pow)T. Ax
> 0 for any non-zero vector x.

For example: x= [1,1] ; x(pow)T = [1,1] ;
A = [{2,1},{1,2}]

A. x = [{2,1}, {1,2}]. [1 ,1] = [3,3];

x(pow)T. A. x = [1,1]. [3,3] = 6 (which is
positive.)

Step 2: To find the Lower Triangular
Matrix, create an empty L matrix of size
3*3, initially filled with zeros. This matrix
will eventually contain the lower triangular
elements. To Fill the matrix L, begin with
the first row and move downwards, filling in
the elements of L row by row:

For diagonal elements (where row index
equals column index where i == j), L[i][i]
must be chosen such that when L is
multiplied by L^T, it produces the element
A[i][i] in the corresponding position. This
means summing the products of all the
previous values in the ith row and ith
column of L (all values up to L[i−1] [i−1]
and earlier), and then subtracting that from
A[i][i]. This guarantees the diagonal element
is correctly set.

 For off-diagonal elements (where row
index is greater than column index (where
i>j), calculate it by subtracting the sum of
products of the elements of row i and
column j in L from A[i][j], and then divide
by L[j][j] (the previously computed diagonal
element).

For instance: 3*3 Lower triangular matrix L
= [{L11, 0, 0}, {L21, L22, 0}, {L31, L32,
L33}]

START

 input matrix A , Lower Tria matrix L
Transpose matrix L^T

Decompose A into L and L^T.

Iterate over rows i = 1 to n.Diagonal

ElementCalculation (where
i==j)Check for the condition L[i][i]

based on L*LT =A

Off-Diagonal Element Calculation for
L[i][j], if i > j Set L[i][j] = (A[i][j] - sum) /

L[j][j].

Solve L ⋅ y= b for ForwardSubstitution,
L^ T.x = Y for BackwardSubstitution.

check A.A^-1 = I

STOP

First Row (i = 0): You calculate only L11
because other entries in this row would be
upper triangular and are therefore zero.

Second Row (i = 1): You calculate L21 (off-
diagonal) and L22 (diagonal).

Third Row (i = 2): You calculate L31, L32,
and L33. After filling in all elements of L,
multiply L with its transpose LT. If the
result equals the original matrix A, the
decomposition is complete and correct.

Step 3: Once we have the lower triangular
matrix L from the Cholesky decomposition
of A, we can use it to find the inverse of A
which involves solving two systems of
equations (forward and backward
substitution) for each column of the identity
matrix to build the inverse of A.

Forward Substitution - Let us consider the
equation AX = b, where A = L.L(pow)T
So L. L(pow)T. X = b where L(pow)T = y.
Therefore L*y = b to get b. where L is a
lower triangular matrix, y is the vector we
want to solve for, and b is a column vector
from the identity matrix I. Since L is lower
triangular, forward substitution allows us to
solve for each element of y in sequence,
from top to bottom, because each row only
depends on the elements that have already
been calculated. Suppose we have matrix L
= [{2,0,0}; {3,4,0}, {1, -1,5}]; b = [1,0,0]

solve y1 = 2y1.1 => y1 =½, similarly y2 =
3y1+4y2 =0; 3.1/2 + 4y2 = 0 => y2 = -3/8

Solve y3 = 1y1 −1y2 +5y3 =0; ½ + 3/8 +
5y3 = 0 =>y3 = -7/40

Backward Substitution – L(pow)T*x = y
once we have the vector y from the forward
substitution, we solve for x in the equation
L(pow)T*x=y to get x. This is done using
backward substitution, which is similar to
forward substitution but starts from the last
element and works upwards. By performing
these steps for each column of the identity
matrix, we get the inverse of A. Now we
have matrix L^T = [{2,3,1}; {0,4, -1};

{0,0,5}]; y = [½, -3/8, -7/40]; L^T*x =y for
x = [x1, x2, x3] based on the above input
matrices, we solve each row from the
bottom up, to get the values of x.

C. PARALLELISATION
STRATEGY FOR LU
DECOMPOSITION MATRIX
INVERSION-MAP PATTERN

 After initialization and
decomposition of A into L and U, I am
planning to use Intel TBB parallel_for
(map pattern) [5] for Forward
substitution to solve L*d=I-> to get d,
backward substitution to solve UX=d->to
compute X(output); and verification of
A*X=I.

DECOMPOSING A INTO L AND U:
parallel_for-row

FORWARD AND BACKWARD
SUBSTITUTION: parallel_for-column

Let's consider the scheduler divides task A
[3][3] into 3 subranges-3 elements in each
subrange in case of using parallel_for(map
pattern) [5].

subrange

value

ranges from

0-2

subrange

value

ranges from

3-5

subrange

value

ranges

from 6-8

Ma

p

N*N, where N is 3

N

Fig. 2 depicts one possible parallel
implementation of the map pattern for
LU and Cholesky Decomposition.

For forward, backward substitution, refer
above diagram, main task may get divided
into 3 tasks (theses 3 tasks will run in
parallel however each task will run
sequentially inside it), so each task may
handle each column values (as explained in
STEP 3: flowchart explanation) to compute
d*X from L*d=I; UX=d; where L, I- for
forward and U, d-for backward, matrices are
shared among 3 tasks, but these tasks won't
modify/update the L, I in forward and U, d
in backward, it will just read values from L
and I, and U and d to compute d [3][3] and
X [3][3]so that we can prevent the race
condition.

D. PARALLELISATION
STRATEGY FOR LU
DECOMPOSITION MATRIX

INVERSION-PARALLEL PIPELINE

After initialization and decomposition of A
into L and U, we used Intel TBB parallel
pipeline, Forward substitution to get d,
backward substitution to compute X(output).

We have implemented the forward and
backward substitution by using parallel
pipeline.

• First stage: Giving columns indices
as input

• Second stage: Forward substitution
to compute intermediate matrix(d)

• Third stage: Backward substitution
to compute inverse matrix(x) using
intermediate matrix(d) from forward
substitution.

PIPELINE IMPLEMENTATION

We have given number of token as 16, in the
first stage 16 columns indices will be
processed and given as an input to the

second stage where the forward substitution
will solve 16 columns in parallel to
compute the intermediate matrix (d) and
once the each columns is processed it will be
send as an input to the final stage where
backward substitution takes place to
compute inverse matrix(x) using
intermediate matrix(d) values from previous
stage like this till the column values reaches
the size of given matrix this process will
continue to compute the inverse.

Fig. 2 depicts one possible parallel
implementation of the parallel pipeline
for LU Decomposition.

E. PARALLELISATION

STRATEGY FOR CHOLESKY
DECOMPOSITION MATRIX

After initialization and decomposition of A
into L and L^T, I am planning to use Intel

TBB parallel_for (map pattern) for
Foward substitution to solve L.y = b -> to
get y, backward substitution to solve
L(pow)T.x=y to get x; and verification of
A*A^-1=I.

For forward, backward substitution , refer
above diagram, main task may get divided
into 3 tasks (theses 3 tasks will run in
parallel however each task will run
sequentially inside it), so each task may
handle each column values (as explained in
STEP 5: flowchart explanation) to compute
y, x where L, b for forward and L(pow)T, y
for backward matrices are shared among 3
tasks, but these tasks won't modify/update
the L, b in forward and L(pow)T, y in

backward, it will just read values from L and
b, and L(pow)T and y to compute y [3][3]
and X [3][3]so that we can prevent the race
condition.

For verification of A*A^-1=I, matrix
multiplication of A and inverse of A may get
split into 3 tasks and it may in parallel if we
use the map pattern.

F. PARALLELISATION STRATEGY
FOR CHOLESKY DECOMPOSITION

MATRIX INVERSION-PARALLEL
PIPELINE

After initialization, we used Parallel pipeline
for computing Foward substitution to get Y,
backward substitution to get X(inverse). We
use 2 main stages in the Parallel pipeline
implementation.

 Stage 1: Generates column indices col
represents the column of the inverse matrix
A^-1.

Stage 2: Compute the inverse of the given
matrix by doing forward and backward
substitution by getting the column indices
from stage1, and it will store the inverse.

 IMPLEMENTATION OF PIPELINE

The pipeline implementation involves 2-
stage pipeline. The stage-1 is serial stage,
which generates col indices, that represents
the current column to process. The stage-2 is
parallel stage, it takes the column index (col)
from Stage 1 and performs the calculations
to compute the inverse of the column using
forward and backward substitution.
Combine the work of forward substitution,
backward substitution, and assignment to the
inverse matrix A^-1 in a single stage. Col 1 -
solve L* y = e, col2- solve L^T*X = Y, col
3 - store X in the col (column of A^-1).

For verification of A*A^-1=I, matrix
multiplication of A and A^-1 are used in
parallel_for , and these tasks will run in
parallel and executed simultaneously.

 III. EXPERIMENTAL SETUP

Once we compute the inverse of the given
matrix via LU and Cholesky Decomposition
separately, we have done matrix
multiplication for the inverse and the input
matrix, which needs to produce identity
matrix as an output. For smaller size of
matrices, we can directly display the inverse
and the identity matrices and we can check
but for the larger data it's difficult to do that
so, we have used MATLAB to verify our
project implementation output. Once we got
the identity matrix we have stored that
identity matrix in a binary file. For LU and
Cholesky Decomposition, we have created
the MATLAB script, once the inverse is
found via MATLAB, by using the inverse
and the input matrix we have checked
whether we are getting the identity matrix
by doing matrix multiplication of those and
store it in an binary file- result file, and this
MATLAB script will also get the binary file
from our implementation-Received file as
an input and it will check the whether the
binary file of what it generated is equal to
the binary file what it received. We are
checking SAD-sum of absolute difference, if
both are same, then we can conclude that
our result is correct if it shows some
difference then result is not correct. In
addition of Sum of absolute differences, we
checked it via figure too, which will display
the result of Matlab file, received binary file
from our code and the difference between
these two files in a figure. We expected to
get sum of absolute difference as 0.

 IV. RESULTS

We have implemented the LU
Decomposition in sequential method
initially, and it took 22 seconds to compute

the inverse of the given matrix for the size
of 2000*2000.

Fig: Sequential implementation of LU
Decomposition- Time to compute inverse

for different matrix sizes-terminal output.

We checked our output via MATLAB.
Below are the figures verifying the result

.

Fig: Sequential implementation of LU
Decomposition- MATLAB-Command

Prompt output shows SAD as 0 for
different matrix sizes.

Fig: Sequential implementation of LU
Decomposition- MATLAB- Figure
displays, MATLAB, code-Identity matrix
and its difference of matrix size

1750*1750.

We implemented LU Decomposition using
different parallelization strategies such as
Intell TBB- Parallel_for, and Parallel
Pipeline which we have learned in our
course. For LU Decomposition, via
parallelization strategy we have achieved
65% performance efficiency compared to
sequential implementation. The
implementation via parallel_for took only 7
seconds which is more efficient than the
sequential implementation. Through the
above different implementation, we have
achieved the performance via parallelization
and we gained the output what we have
expected (the sum of absolute difference as
0, for different size of square matrices). We
found that the sequential method of
implementation works better for the smaller
size, but for the larger data sizes
parallelization method shows much better.

Fig: Parallel implementation using
Parallel_for -LU Decomposition- Time to
compute inverse for different matrix
sizes-terminal output.

We checked our output via MATLAB.
Below are the figures verifying the result

Fig: Parallel implementation using
Parallel_for -LU Decomposition-
MATLAB-Command Prompt output
shows SAD as 0 for different matrix sizes.

Fig: Parallel implementation using

Parallel_for -LU Decomposition -
MATLAB- Figure displays, MATLAB,
code-Identity matrix and its difference of
matrix size 1750*1750.

We have used larger matrix size for our
implementation. By analyzing the below
table, we can say that the performance is
achieved through parallel processing by
dividing the instruction stream into a set of
smaller streams i.e.) thread and distribute
those threads to multiple cores present in the
system to gain the efficiency of the system.
In our system, 4 cores are available we have
made use of this cores and achieved
performance efficiently via parallel
programming.

Programming

methods

 Time to
compute

inverse

(in milli-

seconds)

Speed
improvemen

t via
parallelisatio

n in %

Sequential 4201
7

-

Parallel using
parallel_for

 1437
8

65

Parallel using
parallel

pipeline

14257 66

Table: Timing and performance comparison

between sequential and different parallel

implementation of LU Decomposition

Code style comments Execution
time(in
millisecon

ds)

Sequential Straightforward
sequential implementation
of LU decomposition to find
inverse for size 2000

42017

Intel-TBB-
Parallel_for

 Parallelized version
of LU decomposition to find
inverse for size 2000

14378

Intel-TBB-
Parallel pipeline
and

parallel_for.

 Parallelised version of
LU decomposition to find
inverse for size 2000.

Below are implemented in
pipeline stages after
decomposition of A into L
and U

Stage 1: Processing and
giving Column indices
Stage 2: Forward
substitution to find
intermediate matrix

Stage 3: Backward
substitution to find inverse

matrix.

14257

Table: Comparison of various parallel
approaches of LU Decomposition Matrix
inversion implementation

We have implemented the Cholesky
Decomposition in sequential method to
compute the inverse matrix with different
matrix sizes.

Fig: Terminal Output - Sequential
implementation of Cholesky

Decomposition with different matrix
sizes.

We checked our output via MATLAB.
Below are the figures to verifying the result.

Fig: Sequential implementation of
Cholesky Decomposition- MATLAB-
Command Prompt output shows SAD as
0 for different matrix sizes.

The below figure shows the MATLAB
Identity matrix (Result), Code Identity
matrix (Received) and its difference for
2000*2000 matrix

Fig: Sequential implementation of
Cholesky Decomposition. MATLAB &
Code-Identity matrix and its difference

with matrix size of 2000*2000

We have implemented our project with LU
and Cholesky decomposition inverse
algorithms. We use different parallelization
frameworks like Intel TBB Parallel for and
Parallel Pipeline that we have learned in
our course. For implementing Cholesky
decomposition, I used parallelization
techniques which allows multiple operations
to be performed simultaneously,
significantly reducing the time required to
compute the inverse of large matrices.
Parallel algorithms efficiently distribute the

computations across available cores
minimizing the idle time for processors. By
using Parallelization in our code, we
achieved 84% of performance efficiency
compared to sequential implementation.
Overall, the sequential method works better
for smaller workloads but for larger data
size Parallelization works effectively.

We have implemented the Cholesky
Decomposition in sequential method to
compute the inverse matrix with different
matrix sizes.

. Fig: Terminal Output - Parallel
implementation of Cholesky
Decomposition with different matrix sizes

We checked our output via MATLAB.
Below are the figures verifying the result

Fig: Parallel implementation using
Parallel_for -Cholesky Decomposition-
MATLAB-Command Prompt output
shows SAD as 0 for different matrix sizes.

The below figure shows the MATLAB
Identity matrix (Result), Code Identity
matrix (Received) and its difference for
2000*2000 matrix

Fig: Parallel implementation of Cholesky
Decomposition. MATLAB & Code-
Identity matrix and its difference with
matrix size of 2000*2000

We have used larger matrix size for our
implementation. By analyzing the below
table, we can say that the performance is
achieved through parallel processing by
dividing the instruction stream into a set of
smaller streams i.e.) thread and distribute
those threads to multiple cores present in the
system to gain the efficiency of the system.
In our system, 4 cores are available we have
made use of this cores and achieved
performance efficiently via parallel
programming.

Programming

methods

 Time to

compute

inverse

(in milli-

seconds)

Speed

improvemen
t via

parallelizatio

n in %

Sequential 1718
0

-

Parallel using
parallel_for

2675

84

Parallel using
parallel

pipeline

3015

82

Table: Timing and performance comparison
between sequential and different parallel

implementation of Cholesky Decomposition

Code style comments Execution

time(in
millisecon

ds)

Sequential Straightforward
sequential implementation
of Cholesky decomposition

to find inverse for size 2000

17180

Intel-TBB-

Parallel_for

 Parallelized version
of Cholesky decomposition
to find inverse for size 2000

2675

Intel-TBB-
Parallel pipeline
and

parallel_for.

 We implemented the
pipeline in 2 main stages.
Stage 1: Generates column
indices, col represents the
column of the inverse matrix
A^-1.
Stage 2: Compute the
inverse of the given matrix
by doing forward and
backward substitution by
getting the column indices
from stage1, and it will store
the inverse

3015

Table: Comparison of various parallel
approaches of Cholesky Decomposition
Matrix inversion implementation

CONCLUSIONS

Finally, our project demonstrates the huge
performance advantages obtained through
parallelizing the LU and Cholesky
Decomposition matrix inversion algorithms
using Intell-TBB-parallel_for and pipeline.
We used parallel programming approaches
to optimally leverage multi-core computers,
resulting in significant reductions in

execution time, when compared to
sequential methods. The implementation
successfully solved issues like load
balancing and synchronization overhead,
resulting in optimal performance and
scalability. This initiative not only improves
the efficiency of inversion processing
operations but also provides significant
insights and a solid platform for future
developments in parallel matrix inversion
computing. The performance evaluation
results outlined in this project have
demonstrated that our project is suitable for
achieving performance efficiency in matrix
inversion algorithms through parallel
programming.

REFERENCES

[1] "Matrix Inversion and Eigenvalue,"
SRM Institute of Science and Technology.
Available: https://webstor.srmist.edu.in/web
_assets/srm_mainsite/files/2018/MatrixInver
sionandeigenvalue.pdf

[2] "Matrix Multiplying," Math is Fun.
Available: https://www.mathsisfun.com/alge
bra/matrix-multiplying.html

[3] Y. Zhang, "LU Decomposition," CAAM,
Rice University, Fall 2009.
Available: https://www.cmor-
faculty.rice.edu/~zhang/caam335/F09/hando
uts/lu.pdf

[4] "Matrix Row Operations," Khan
Academy.
Available: https://www.khanacademy.org/m
ath/algebra-home/alg-matrices/alg-
elementary-matrix-row-operations/a/matrix-
row-operations

[5] “ECE-5772-Lecture notes unit 4-Map
Pattern”-
https://moodle.oakland.edu/pluginfile.php/9

https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/2018/MatrixInversionandeigenvalue.pdf
https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/2018/MatrixInversionandeigenvalue.pdf
https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/2018/MatrixInversionandeigenvalue.pdf
https://www.mathsisfun.com/algebra/matrix-multiplying.html
https://www.mathsisfun.com/algebra/matrix-multiplying.html
https://www.cmor-faculty.rice.edu/~zhang/caam335/F09/handouts/lu.pdf
https://www.cmor-faculty.rice.edu/~zhang/caam335/F09/handouts/lu.pdf
https://www.cmor-faculty.rice.edu/~zhang/caam335/F09/handouts/lu.pdf
https://www.khanacademy.org/math/algebra-home/alg-matrices/alg-elementary-matrix-row-operations/a/matrix-row-operations
https://www.khanacademy.org/math/algebra-home/alg-matrices/alg-elementary-matrix-row-operations/a/matrix-row-operations
https://www.khanacademy.org/math/algebra-home/alg-matrices/alg-elementary-matrix-row-operations/a/matrix-row-operations
https://www.khanacademy.org/math/algebra-home/alg-matrices/alg-elementary-matrix-row-operations/a/matrix-row-operations
https://moodle.oakland.edu/pluginfile.php/9501748/mod_resource/content/5/Notes%20-%20Unit%204.pdf

501748/mod_resource/content/5/Notes%20-
%20Unit%204.pdf

[6] A. Ziefert, "Cholesky Decomposition,"
Matrix Algebra, Oct. 13, 2020. [Online].
Available: https://zief0002.github.io/matrix-
algebra/cholesky-decompostion.html

[7] "Triangular matrix," Wikipedia, The
Free Encyclopedia. [Online].
Available: https://en.wikipedia.org/wiki/Tria
ngular_matrix

https://moodle.oakland.edu/pluginfile.php/9501748/mod_resource/content/5/Notes%20-%20Unit%204.pdf
https://moodle.oakland.edu/pluginfile.php/9501748/mod_resource/content/5/Notes%20-%20Unit%204.pdf

