
Fractals
By: Matthew Redoute

Mandelbrot & Julia Sets
● Equation: f(z) = z^2 + c.
● 2D sets defined in cpx plane where c is cpx num that does not diverge

into infinity (i.e. greater than 2). Recursion is applied throughout desired
cpx cords (Re, Im)

● Mandelbrot: starts at iter of z at 0;
c is changing (i.e. cpx cord)

● Julia: starts at iter of z at 1st cpx cord;
c is constant throughout all cpx cords

Parallelization Strategies
● PAR 1 - parallel_for ● PAR 2 - parallel_invoke &

parallel_for

Initial Setup
RE_NUM_MIN/MAX_CORD: (-2, 1), IM_NUM_MIN/MAX_CORD: (-1, 1)

step size RE_RANGE_CNT IM_RANGE_CNT TOTAL_RANGE

1 4 3 12

0.5 7 5 35

0.25 13 9 117

0.1 31 21 651

0.01 301 201 60501

0.001 3001 2001 6005001

Fractal Dimensions
● Mandelbrot Set

Step: 0.1 RANGE: 651 Step: 0.01 RANGE: 60501

Fractal Dimensions
● Julia Set (c being -0.54 + 0.54 * I)

Step: 0.01 RANGE: 60501 Step: 0.001 RANGE: 6005001

Results

Test: All Implementations

Test: P1 vs P2 Board - Low Ranges

Test: Par 1 - Laptop vs Board

Challenges
● Cpx cords being set, i.e. at cord would be missing.

Solution: create a vector to send to hold cords.

● Complex number compatibility issues between c & c++.
Solution: c - double complex Re + Im * I
 c++ - complex<double>(Re, Im)

● At high step ranges, 0 would be a very small number
Solution: not problem with code but machine

● Race conditions for TBB
Solution: create vectors instead of variables.

References
1. Oakland University picture: slide 1

https://www.commonapp.org/explore/oakland-university
2. Mandelbrot & Julia Set picture: slide 2

https://paulbourke.net/fractals/juliaset/

https://www.commonapp.org/explore/oakland-university
https://paulbourke.net/fractals/juliaset/

