
Fractals
Matthew Redoute

Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester MI
e-mail: mredoute@oakland.edu

ABSTRACT
Fractals, such as the Mandelbrot and Julia Sets, are great
applications to perform parallelization. This is because
complex coordinates within the complex plane are inserted
into an identical function to determine its belonging in the
set. Two parallel approaches coming from Threading
Building Blocks (TBB) were utilized: parallel_for and
parallel_invoke. The results showed significant decrease in
time and even halved sequential implemenations at the
higher step sizes. The Julia set’s elapsed time was a lot less,
causing the parallel_invoke strategy almost useless.
However, another time consuming fractal similar to the
Mandelbrot would make a perfect example for this second
parallel strategy.

EQUATION

OR , (1)𝑓
𝑐
(𝑧) = 𝑧2 + 𝑐 𝑧

𝑛+1
= 𝑧

𝑛
2 + 𝑐

Ⅰ. INTRODUCTION
The contents of the report contain an introduction on the
Mandelbrot and Julia fractals, a detailed methodology on the
sequential and parallel implementations, an overview of the
experimental setup, and a discussion of the gathered results.

A. Mandelbrot Set
The Mandelbrot set, represented by equation 1, is a 2D set
defined in a complex plane where c is a complex number that
does not diverge into infinity upon iteration of z at 0.
Therefore, recursion is applied resulting in two output cases:
unbounded (not in the set, meaning blowing up or going to
infinity) or bounded (in the set). An example can be seen in
Table 1 for complex numbers 1 and -1 indicating unbounded
and bounded, respectively [1] [3].

B. Filled Julia Set
The filled Julia set is similar to the Mandelbrot set because it
also uses equation 1 to determine if z blows up upon iteration.
However, the complex number z can now start anywhere while
c is fixed. Additionally, the filled Julia set’s output behavior
can determine if the starting point belongs in the Mandelbrot
set. For example, the filled Julia set can result in one piece and
disconnected pieces resulting in it belonging and not
belonging to the Mandelbrot set, respectively [2] [3].

Mandelbrot Equation: (un)Bounded Complex Elements

iteration CASE 1: c = 1
(unbounded)

CASE 2: c = -1
(bounded)

0 1 -1

1 2 0

2 5 -1

3 26 0

Table 1: Example of Complex Elements Bound vs Unbound

C. Fractal Dimensions
Fractal dimensions determine the granularity of a fractal. The
more complex coordinates there are between the minimum
and maximum coordinates, the better looking the fractal
becomes. For example as shown in Figure 1, a shorter stick
reveals a more detailed fractal.

Figure 1: Example of Fractal Dimension

Ⅱ. METHODOLOGY
A. Sequential Implementation
As discussed in the introduction, the sequential
implementation can be performed through equation 1 where
recursion is applied until ‘z’ is greater than two or the
interaction count has reached the maximum number of
iterations; therefore, the complex number coordinate is not and
is part of the Mandelbrot and Julia sets, respectively.

1

mailto:mredoute@oakland.edu

B. Pseudocode
The understanding of the algorithms were first achieved
through Octave due to its simplistic matrix style programming
language and as a proof of concept for the sequential
implementations. The descriptive pseudocode below reveals
the steps to generate Mandelbrot Figure 2 and Julia Figure 3.

1. Set up all complex numbers (Re, Im) to be called by
functions IsCpxNumInMandelbrotSet and
IsCpxNumInJuliaSet. Respectively from equation 1,
Mandelbrot has 1 parameter in which the complex
number represents ‘c’ while Julia has 2 parameters in
which the complex number represents ‘z’ while ‘c’ is
fixed at a complex coordinate number.

2. Within both functions: Create & set vars z (only for
Mandelbrot) & iter to 0 b/c each complex number
iterates from 0 to ∞ (i.e., max iters). Complex
number(s) fed into the equation runs until z > 2 or
iter > max_iter. If iter == max_iter, then complex is
in the set, thus return TRUE, else FALSE.

3. If the function returns TRUE, then plot the cpx num
(Re, Im) onto the complex plane.

Pseudocode:Mandelbrot & Julia Set

Figure 2:Mandelbrot Set Proof of Concept

Figure 3: Julia Set Proof of Concept (c at -0.54 + 0.54i)

C. Parallel Implementation
Since both fractals are utilizing equation 1 differently, i.e. the
Mandelbrot changes c while it is constant for Julia, TBB
parallel_invoke was utilized. Two different functions (one for
Mandelbrot and one for Julia) were created representing the
tasks performed in parallel. Additionally, due to each complex
plane coordinate needing to be fed into the functions to
determine if it belongs in the set, TBB parallel_for was
applied as well. Therefore, two parallelization strategies were
implemented: parallel_for and parallel_invoke followed by
parallel_for. In either approach the complex numbers being
sent to these functions are each done in parallel instead of the
sequential approach where the next complex number is fed
once the current one is finished.

1. parallel_for
The first approach implements a map pattern allowing a
collection of elements to be iterated in parallel. A parallel_for
function typically replaces a sequential for loop where each
iteration calls the body statements in parallel. The iterations
are broken into tasks and sent to the operating system
scheduler, where available threads execute iterations
(non-deterministically). Below represents the syntax:
parallel_for(blocked_range<int>(0, n), func_obj);. The
blocked_range represents the iterations as [0, n). However,
compact lambda expressions were used which modified the
syntax to hide the blocked_range and anonymously create the
function object. The new syntax became: parallel_for(int(0),
int(n),[capture-list] (int k); where capture-list captures the
variables by value or reference and k is the current iteration
index. As shown in Figure 4, the flowchart reveals that the
complex coordinates (Re, Im) are sent both to the Mandelbrot
and Julia functions through one parallel_for function.

2

2. parallel_invoke
The second approach also implements a map pattern but on
different tasks. Below represents the syntax:
parallel_invoke (const Func0& f0, … , Func9& f9); Similarly,
compact lambda expressions were used for the parameters to
replace the need of manually creating function objects
(functors). As shown in Figure 5, the flowchart reveals the
Mandelbrot and Julia functions as the two tasks in which
parallelization is performed. With this approach, if the two
functions take the same time sequentially, then a time elapsed
calculation should be half of the first parallel approach [4].

Figure 4: P1 Strategy - parallel_for

Figure 5: P2 Strategy - parallel_invoke &
parallel_for

Ⅲ. EXPERIMENTAL SETUP
A. Hardware & Software
The code was written in Ubuntu on a Terasic DE2I-150 board
consisting of an Intel Atom processor running at 1.6 GHz
containing two cores with two execution threads per core (4

logical processors). Additionally, the code was tested on a
windows laptop (through a VM) consisting of an Intel
i7-7700HQ running at 2.8 GHz with 2 cores with 2 execution
threads per core (4 logical processors).

B. Test Cases
Ten step sizes were utilized to obtain timing results from small
to large vectors. A smaller step size meant more complex
numbers resulting in a large vector size. For example, as
shown in Figure 6, a step size of one creates a vector size of
twelve.

Figure 6:Mandelbrot cpx plane & Vector size (step of 1) [5]

C. Verification
The verification of the created fractals in C++ were compared
with the Octave results. This was achieved by returning a one
or zero for each complex number (answering the question if
the complex number is in the fractal set) and storing the result
in a large vector. The vector is then written to a binary output
file which is then compared with a vector generated from an
Octave implementation. Finally, a sum of differences is
calculated between the two vectors where a result of zero
means the C++ implementation was successful.

D. Valgrind
Valgrind is a memory programming debugging tool for
discovering memory leaks and (de)allocation issues. The tool
specifically helped solve a segmentation fault due to accessing
unavailable allocated memory space. Therefore, the allocated
vector size storing the results was fixed by increasing its size
to the correct amount.

Ⅳ. RESULTS
The execution of the program is performed by the bash
command: $./fractals <step_size>. Figure 7 displays a
terminal output where the step size equals 1 (vector size, range
of 12) and with the macro DEBUG set to TRUE. The DEBUG

3

macro reveals the total number of complex numbers that
belong to the fractal set, making it easier to identify if the
sequential and parallel implementations were identical.

Figure 7: Terminal output with step size as 1 & DEBUG
macro set to TRUE

A. Comparing Time Measurements
Time measurements were gathered which can be shown in the
Appendix section. The main columns to look at are the
sequential Mandelbrot and Julia (SMJ) and the parallel ones
(P1 and P2). Additionally, individual fractal implementations
were measured (first four columns) to see one’s performance
without the other fractal present.

The first table describes time measurements from the board
with a maximum iteration set to 512. The higher step sizes
(0.1, 0.5, and 0.25) result in slower times for parallelization,
primarily because of the TBB library and API overhead that is
needed. However, reaching a step size between 0.25 and 0.1
transitions faster times for the parallel strategies with each
halving the sequential time. Additionally, it is important to
note that the P1 and P2 strategies were almost identical except
for the first couple test cases. This makes sense because the
individual Julia implementations were significantly faster than
the Mandelbrots ones. If the SM & SJ were similar, then the
P2 strategy would halve the P1 strategy. Table 2 describes the
time measurements from the board at a maximum iteration set
to 1024, resulting in the doubling for all the SM, PM, and SMJ
implementations. SJ and PJ stayed the same while P1 and P2
doubled at the lower step sizes. The third and fourth tables
describe the time measurements from the laptop. Due to a
faster processor, the parallel implementations showed faster
times at almost all the test cases except the first couple.

B. Challenges
1. Missing Complex Coordinates
The first challenge encountered was the missing of complex
coordinates that were being sent to the fractal functions. It is
still unclear the reasoning behind this, but this phenomenon
occurred during lower step sizes. The solution involved
dynamically allocating an array (based on the user inputted
step size) where each element consisted of a struct with data
members for the real and imaginary coordinates.

2. Complex Compatibility Issues
The second challenge encountered was complex compatibility
issues from compiling with C vs C++. With online research
the solution became clear that the programming languages
used different syntaxes for the creation of complex numbers:
double complex z; z = Re + Im * I (<complex.h> and
complex<double> z: z = (Re, Im) (<complex>), respectively.

3. Complex Coordinates as 0
The third challenge encountered was the complex plane
coordinates for 0 would instead be a very small number. This
phenomenon would only happen in my virtual machine
environment. In fact, the proof of concept Octave
implementations on my native windows OS worked as
expected, but running the same file in Octave within the VM
showed this happening. The solution became clear that this
issue was machine dependent.

4. Race Conditions for TBB
The fourth and final challenge was experiencing race
conditions for the debug variables while dealing with the TBB
functions. Since the debug variables were outside the scope of
the functions, multiple threads could access them at a time
yielding the total_* variables to produce different results when
running the application.

Ⅴ. CONCLUSIONS
In conclusion, TBB’s performance led to the decrease in
computation time for both Mandelbrot and Julia Sets. This
fractal application showcased the power of TBBs and why the
use of multiple cores and threads can almost always improve
one’s performance. Some further improvements would be to
create more fractals and to return the iteration of each complex
number which can be used for coloring the fractals.

Ⅵ. REFERENCES
[1] https://en.wikipedia.org/wiki/Mandelbrot_set
[2] https://en.wikipedia.org/wiki/Julia_set
[3] https://www.youtube.com/watch?v=NGMRB4O922I
[4] https://www.secs.oakland.edu/~llamocca/index.html
[5] https://ncatlab.org/nlab/show/Mandelbrot+se

4

https://en.wikipedia.org/wiki/Mandelbrot_set
https://en.wikipedia.org/wiki/Julia_set
https://www.youtube.com/watch?v=NGMRB4O922I
https://www.secs.oakland.edu/~llamocca/index.html
https://ncatlab.org/nlab/show/Mandelbrot+set

Ⅶ. APPENDIX - DATA COLLECTION

BOARD (MAX_ITER = 512)

step (size) SM (us) PM (us) SJ (us) PJ (us) SMJ (us) P1 (us) P2 (us)

1 (12) 994 2774 55 70 865 3042 1006

0.5 (35) 1811 3620 143 250 1903 4714 3016

0.25 (117) 6616 7405 808 1873 6132 8148 9077

0.1 (651) 26726 17808 5956 4005 37110 22138 19428

0.05 (2501) 106913 67822 24720 15188 125805 77740 65549

0.01 (60501) 2387769 1246708 592183 345369 3053782 1585526 1587576

0.003
(668334)

26783295 11259956 5786148 2939285 34901261 14442918 14318074

0.002
(1502501)

54910291 25633611 13566255 6510495 69535060 30641099 30070675

0.0015
(2670000)

98125648 45182934 24216932 17286905 136193852 83631824 83616507

0.001
(6005001)

268878332 98561471 54764069 25421260 274942426 120579766 145909507

BOARD (MAX_ITER = 1024)

step (size) SM (us) PM (us) SJ (us) PJ (us) SMJ (us) P1 (us) P2 (us)

1 (12) 1559 3542 53 125 1669 3184 2378

0.5 (35) 4308 6189 129 193 3846 5311 3173

0.25 (117) 11260 16882 805 3271 12158 10470 6752

0.1 (651) 51243 36194 6711 7583 64097 45250 43305

0.05 (2501) 204560 141977 22909 22423 233678 145240 135662

0.01 (60501) 4716694 2082056 611544 255156 5413252 2171016 2180614

0.003
(668334)

45625752 22102791 6039269 3163874 52690876 24381534 24313403

0.002
(1502501)

102824710 49832446 13415408 6977120 117312358 79193337 83965207

0.0015
(2670000)

217062838 133191937 31088184 17298713 216773118 142251986 146668254

0.001
(6005001)

513128798 267296673 65402022 36764013 533373583 300023789 301700639

5

LAPTOP (MAX_ITER = 512)

step (size) SM (us) PM (us) SJ (us) PJ (us) SMJ (us) P1 (us) P2 (us)

1 (12) 164 348 11 16 180 329 116

0.5 (35) 338 465 24 20 384 490 199

0.25 (117) 964 731 151 77 1099 711 473

0.1 (651) 5164 2888 1399 731 6607 3503 3681

0.05 (2501) 18912 9182 4109 1897 27740 11267 11355

0.01 (60501) 424705 233144 105539 57103 529670 272700 277526

0.003
(668334)

4531646 2417346 1112228 572522 5659827 2951749 3002682

0.002
(1502501)

10237756 5617855 2531764 1336452 12782056 6750351 6848396

0.0015
(2670000)

18245001 9831741 4545176 2353583 22795041 12046066 12092886

0.001
(6005001)

43404259 22176000 10614034 5316964 53555897 26935598 27224907

6

LAPTOP (MAX_ITER = 1024)

step (size) SM (us) PM (us) SJ (us) PJ (us) SMJ (us) P1 (us) P2 (us)

1 (12) 291 453 10 11 310 407 198

0.5 (35) 713 556 25 19 712 666 437

0.25 (117) 1992 1170 150 135 2076 1427 1279

0.1 (651) 10214 6515 1360 786 12197 6999 9675

0.05 (2501) 35564 17329 3956 2090 47771 20029 19598

0.01 (60501) 815100 436605 11007 54505 924907 478501 487119

0.003
(668334)

8911883 4841782 1162173 626614 10159241 5556781 5529584

0.002
(1502501)

20901921 10792177 2857091 1439762 24455671 12501607 12609205

0.0015
(2670000)

35990715 19154444 4686936 2447890 40564312 21331152 21662382

0.001
(6005001)

82276160 42938549 10547304 5506977 94221344 47369804 48379850

