
Morphology Operations

Exploring TBB and Pthreads

Robert McInerney

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

ramciner@oakland.edu

Abstract—The purpose of this project is to explore how TBB and

pthreads can impact execution speed.

I. INTRODUCTION

The motivation behind this project is to determine the
impact of different parallelization strategies. We will also
explore how different aspects will change timings. This will
include different sized structural element, amount of threads,
picture size and hardware.

II. METHODOLOGY

A. Strucutring Element

A structuring element is the neighborhood of where we
apply the morphological operation. The center of the
structuring element will contain the input pixel of which the
operation is being done. For the morphological operations we
will be using a disk with radius 2 as well as radius 1. The mask
that is applied we can call a kernel. This mask is hard coded
into the cpp file. There is a switch available to determine if
you want to use a disk size 1 or 2.

Figure 1: Structuring Element

B. Erosion

Erosion involves taking the minimal value of the image

over the structuring element.

C. Dilation

Dilation involves taking the maximum value of the image
in the structuring element.

D. Opening

Opening is when you do erosion followed by dilation.

Opening is used for breaking narrow elements and

eliminating small noise [2].

E. Closing

Closing is the opposite of opening in the sense that it

should be dilation followed by erosion. Closing involves

smoothing boundaries to join narrow breaks and small

holes caused by noise. [2]

F. Boundary Extraction

Boundary extraction can be done as a inner boundary or

an outer boundary extraction. To do an inner boundary

you need to take the original image and subtract the

eroded image. To do a outer boundary you need to take a

dilated image – original image. Both of these operations

have been explored in this project.

G. Main Program Flow

Figure 2: Main Program Flow Chart

The main program flow starts by reading elements that have

been input by the user. This will be input initially when

calling the program. There are four input elements. The first

element is which morphology operation is needing to be

performed. This can be a value from 1 – 6. Dilation is 1,

erosion is 2, opening is 3, closing is 4, inner boundary

extraction is 5, and finally outer boundary is 6.

 The second input argument is an image selector.

Since four images were used in the project this allows you to

swap between the images. However, the input.bif needs to be

updated before running again. This switch simply changes

column and row values to account for different sized images.

Now parameter 3 is the size of structuring element, this can

be a 1 or a 2. Finally the last parameter is how many cores to

launch for the pthread implementation.

 The next steps in the program flow include

allocating the memory for the tbb and pthreaded applications.

We then define the values of SE based on the input

parameters. Next we read in the input file into both the TBB

and pthread buffers. The parallelization methods are then

invoked. In order to write to the output image buffers we look

at which operation was requested. This is due to the fact that

some of these operations take two operations to complete.

Thus it changes which buffer has the final output. The

software uses O and O2 and buffers. In the case of opening

for example we do erosion and store the results in O. Then

we do dilation with the input to dilation being O. The output

is then O2. So based on this information we will write O2 to

the output file. The last part of the program flow is to publish

the timing for sequential, tbb, and pthread implementation.

Figure 3: Application call

 The two parallelization approaches that were used
were TBB and pthreads. TBB was done by using nested
parallel for loops. These were done along the lines of sX and
sY. sX an sY are simply the rows and columns of the image.
So, this allows each pixel to get the operation be completed in
parallel. Now, for some operations it would take launching
two separate parallel_for operations. For example in the case
of opening you needed to perform erosion before dilation. So
we would launch the parallel_for loops for erosion. Once all
of these were complete then we would do the dilation of the
output image from the dilation.
 For the pthread approach threads were launched
based off of columns from an image. Based on the number of
threads an upper and lower bound would be calculated for
each thread. This upper and lower bound would define how
much of the image each thread would be responsible for. This
essentially made the image into strips that each thread would
take care of each row in those columns. Like TBB if there was
a multi operation then we would need to launch the threads
and wait for them all to complete or merge. After this, we
would launch new threads for the second operation.

III. EXPERIMENTAL SETUP

The project is being ran on a DE2i-150 board. This board
is running linux operating system. Data was collected for
multiple amount of threads as well as structuring element. The
same test was similarly done on a desktop PC running Ryzen
7 3700.

IV. RESULTS

The results will use a MATLAB script much like the ones
used in assignments during the course. It will compare the
image tested in MATLAB with the output file from the board.
A sum of differences will be presented to the user. The matlab
script will also support taking a JPEG image and converting it
to a greyscale image that way multiple images can be tested.
This will allow us to see the impact of different sized images
regarding the 3 different approaches as well. Some elements
of the matlab script may need edited to check different
parameters such as image need to change to the image you are
checking and SE needs updated accordingly.

Figure 4: Mountains Dilation

We can see in figure 4 that TBB took slightly longer than
the sequential approach for a relatively small image. This
image was 600 x 400. For comparison sake of the three
parallelization strategies we will use pthreads launching 5
threads. This is due to five threads being the best inflection
point of time savings.

Figure 5: Uchip Dilation

 In figure 5 we can see when we run a slightly larger
image, 940 x 602 that there is some more benefit to TBB.
The values are rather similar and seem to be only a slight
gain. And in this case again pthreads is able to really give us
a speed up.

Figure 6: Building Dilation

 For the building image the pixel count is 3472 by
2315. This is a considerable jump in pixel size compared to
the previous two images. TBB now creates a significant time

savings. And here again we see that pthreads saves the most
time.

Figure 7: Rose Dilation

 The final image is that of a rose that is coming in at
5168 by 4000 for the pixel count. Here we can see an even
bigger jump in time savings for TBB. So it is safe to say as
the image gets larger that TBB is able to see more and more
benefits.

Figure 8: Parallelization on PC

 The next point of comparison that was explored was
that would these different strategies change if the hardware
changed. It turns out that TBB had huge gains from extra
resources available to the algorithm. This can be seen base
on the differences of Figure 8 and Figure 9. Both of these
operations were to do with dilation. Pthreads gained less by
changing hardware than the TBB algorithm did.

Figure 9: Parallelization on DE2i

 The amount of pthreads executed is another avenue
that I wanted to explore. It was found that going to 5 threads
provided a very big jump in execution time. However,
anything over 5 threads were minimal or negligible speed
ups. This is due to the operation not being that intensive.

Figure 10: Amount of Pthreads

Figure 11: SE Element

 The final test that was measured based on this
experiment is how the changing of the structuring element
could change the operations. Figure 11 is that of dilation and
it can be seen that pthreads increasing did not change much
even as the SE element increased. This is due to the pthreads
were done at the pixel level, rather than launching pthreads
throughout the kernel. Since the SE element itself is not very
big it did not make sense to launch pthreads for every single
pixel as the overhead would be huge. In the case of TBB we
also did not do parallel_for during the phase of processing
the kernel. Dilation and the other operations seen similar data
trends. The rest of the data can be seen in the below tables.

Table 1: Dilation Data DE2i

Table 2: Erosion Data DE2i

Table 3: Opening Data DE2i

Table 4: Closing Data DE2i

Table 5: Boundary Inner DE2i

Table 6: Boundary Outer DE2i

Table 7: Dilation Data PC

Table 8: Erosion Data PC

Table 9: Opening Data PC

Table 10: Closing Inner PC

Table 11: Boundary Inner PC

Table 12: Boundary Outer PC

CONCLUSIONS

 In conclusion I have seen that parallelization can be
a massive asset to performing image processing. I can also say
that the more resources that your PC has available the further
TBB is able to optimize your system. The pthread
implementation was able to give me the best results. And the
gains from pthreads seemed to level off at 5 threads allocated.
Both of the parallelization techniques saw bigger gains as the
pictures increased in size. The structural element being
smaller or larger was not really sped up via TBB or pthreads.
However, this is expected based on the implementation of the
code. The next step for this project would be to investigate
how to parallelize the solving of the kernel for each pixel.

REFERENCES

[1] Lecture 7 - web.cs.wpi.edu. (n.d.).

https://web.cs.wpi.edu/~emmanuel/courses/cs545/S14/slides/lecture0
7.pdf

[2] Morphological image analysis - purdue university. (n.d.-b).
http://www.cyto.purdue.edu/cdroms/micro2/content/education/wirth0
7.pdf

[3] GeeksforGeeks. (2022, March 14). Boundary extraction of image using
MATLAB. GeeksforGeeks. https://www.geeksforgeeks.org/boundary-
extraction-of-image-using-matlab/

http://www.cyto.purdue.edu/cdroms/micro2/content/education/wirth07.pdf
http://www.cyto.purdue.edu/cdroms/micro2/content/education/wirth07.pdf

