
Multithreaded Image Processing Tool

ECE 5772 - High Performance Embed 
Programing

Oakland University
Fall 2023

Team: Mazen Albarazi
Martin Shoraji

December 14th, 2023



Application

To create a multithreaded image processing tool that the user can use for many of 

the popular filtering and morphological image operations and compare the 

processing times for the different operations in respect to a sequential and a 

parallel approach, as well as to different image sizes and running it on different 

machines. This project could even be used to create a GUI for the user, similar to a 

MATLAB tool that can do different operations on an input image.



Image Processing Operations



Algorithm

● Blur and Edge Detection - Filtering using convolution

● Dilation and Erosion - Morphological operations by adding to or subtracting a 

kernel from the image

● Gamma - Changing luminance values according to the following formula and 

a factor Y = 0.6



1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

0 0 1 0 0

0 1 1 1 0

1 1 1 1 1

0 1 1 1 0

0 0 1 0 0

Dilation and Erosion

1/25 1/25 1/25 1/25 1/25

1/25 1/25 1/25 1/25 1/25

1/25 1/25 1/25 1/25 1/25

1/25 1/25 1/25 1/25 1/25

1/25 1/25 1/25 1/25 1/25

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

-3 -3 6

-3 6 -3

4 -5 1

5x5 Average Blur

Edge Detection

Gaussian Blur

3x3 Average Blur

Kernels



Flowchart

● Read .bif file and operation 

number/image size

● Run function for desired 

image processing 

operation

● Output .bof file



Parallelization Strategy

● Parallel_for loop was used since an operation had to be performed on each 

individual pixel, which meant multiple pixels could have the same task 

performed in parallel

● Every iteration is independent

● The number of iterations is known due to the dimensions of the image being 

known in advance

● Every computation depends particularly on the number of iterations 

performed and the input data uses the iteration count as an index for the 

operation

● PThreads was not used due to the program functioning

with multiple image sizes, TBB would take care of

assigning the number of threads more efficiently



Examples

Original Greyscale



Examples

Dilation Erosion



Examples

Gamma Correction Edge Detection



Examples

Averaging Blur 3x3 Averaging Blur 5x5

Gaussian Blur



Data 480 x 307 Image (147,360 elements)

Intel Atom Dual Core Processor N2600 @1.6GHz (Terasic DE2i-150 board)

Intel Core i5-6200U 2-Core Processor @2.30GHz

AMD Ryzen 9 5900X 12-Core Processor CPU @3.70GHz



Data 640 x 410 Image (262,400 elements)

Intel Atom Dual Core Processor N2600 @1.6GHz (Terasic DE2i-150 board)

Intel Core i5-6200U 2-Core Processor @2.30GHz

AMD Ryzen 9 5900X 12-Core Processor CPU @3.70GHz



Data 940 x 602 Image (565,880 elements)

Intel Atom Dual Core Processor N2600 @1.6GHz (Terasic DE2i-150 board)

Intel Core i5-6200U 2-Core Processor @2.30GHz

AMD Ryzen 9 5900X 12-Core Processor CPU @3.70GHz



Data 1280 x 820 Image (1,049,600 elements)

Intel Atom Dual Core Processor N2600 @1.6GHz (Terasic DE2i-150 board)

Intel Core i5-6200U 2-Core Processor @2.30GHz

AMD Ryzen 9 5900X 12-Core Processor CPU @3.70GHz



Data 1920 x 1230 Image (2,361,600 elements)

Intel Atom Dual Core Processor N2600 @1.6GHz (Terasic DE2i-150 board)

Intel Core i5-6200U 2-Core Processor @2.30GHz

AMD Ryzen 9 5900X 12-Core Processor CPU @3.70GHz



Results and Conclusions

● TBB is faster/better than sequential in image processing operations

● As image size or number of elements increase, processing time increases 

and TBB becomes much more efficient than sequential

● As the processor core count and speed increase, processing time decreases



Future Improvements

● Other image processing operations can be implemented

● A MATLAB script to convert an image back from the final .bof back to a .bif 

so it can be re-processed with another operation

● Parallel_pipeline could be used to assist in indexing the pixels concurrently, 

which would not speed up the calculation time, but could improve loading 

time for very large images

● A GUI can be implemented for a more user-friendly image processing tool



DEMO

https://drive.google.com/file/d/1clxwDLuGyqClcZWvs
bTiekF1EsrIbVVY/view?usp=drive_link

http://drive.google.com/file/d/1clxwDLuGyqClcZWvsbTiekF1EsrIbVVY/view
https://drive.google.com/file/d/1clxwDLuGyqClcZWvsbTiekF1EsrIbVVY/view?usp=drive_link&authuser=1
https://drive.google.com/file/d/1clxwDLuGyqClcZWvsbTiekF1EsrIbVVY/view?usp=drive_link&authuser=1


Thank You!



Questions?


	Slide 1: Multithreaded Image Processing Tool
	Slide 2: Application
	Slide 3: Image Processing Operations
	Slide 4: Algorithm
	Slide 5: Kernels
	Slide 6: Flowchart
	Slide 7: Parallelization Strategy
	Slide 8: Examples
	Slide 9: Examples
	Slide 10: Examples
	Slide 11: Examples
	Slide 12: Data 
	Slide 13: Data 
	Slide 14: Data 
	Slide 15: Data 
	Slide 16: Data 
	Slide 17: Results and Conclusions
	Slide 18: Future Improvements
	Slide 19: DEMO
	Slide 20: Thank You!
	Slide 21: Questions?

