
Multithreaded Image Processing Tool

ECE 5772 – High Performance Embedded Programming

List of Authors (Mazen Albarazi, Martin Shoraji)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: albarazi@oakland.edu, martinshoraji@oakland.edu

Abstract— A parallel implementation of image processing

operations utilizing the Threading Building Blocks (TBB)

library created and compared with a sequential implementation

to express the benefits of multithreaded parallel computing. The

implementation is done on the Terasic DE2i-150 Development

Board. The project includes several image processing

operations such as average blurring, Gaussian blurring, edge

detection, erosion, dilation, and gamma correction. These

operations use concepts such as convolution and multiple other

image processing complex techniques and manipulations. The

project focuses on comparing thoroughly the computation times

of a sequential implementation and the TBB implantation and

explores how the parallel implementation benefits and improves

the efficiency and reduces computation time for large data sets

and on more efficient processors. The code is implemented using

different types of data structures in C++ and utilizes libraries as

needed to implement the parallelization and extract the

computation times. Major findings concluded that parallel

programming is a much more efficient approach than sequential

for image processing. Different factors such as the image size or

number of elements, different processors’ core count and speed

play a significant role in the operation calculation time.

I. INTRODUCTION

Image processing is the use of a computer to process

images through an algorithm. Since images are defined in two

dimensions, digital image processing may be modeled in the

form of multidimensional systems such as matrices. The

generation and development of the image processing is

mainly affected by three factors, the device it is run on, the

development of the algorithm, and the application desired.

The Objective was to create an image processing tool that the

user can use for many of the popular filtering and

morphological image operations and compare the processing

times for the different operations in respect to a sequential

and a parallel approach, as well as to different image sizes

and running it on different machines, thus, demonstrating the

efficiency of a multithreaded image processing tool over a

sequential one.

II. METHODOLOGY

A. Algorithm

Some of the image processing operations used are blur,

which includes three types: 3x3 average blur, 5x5 blur, and

Gaussian blur. Another operation utilized is edge detection.

These operations all use specialized kernels that implement

filtering through the convolution concept. Other operations

utilized are dilation and erosion, which are morphological

operations that also use the convolution concept but also

change the shape of the image by adding to or subtracting

pixels from the original image. Finally, a gamma correction

function is also implemented as part of the project. This

operation is used to change the luminance values for each of

the image pixels.

Below are some examples of the image operations

previously implemented and are explored as part of the

project.

Figure 1. Gaussian Blur

Three of the operations implemented are focused on a blur

filter. Figure 1 shows one of the three blur filters, the

Gaussian Blur [1], which is a special type of blurring that uses

a Gaussian function for calculating the transformation to

apply to each pixel in the image.

Figure 2. Edge Detection

Figure 2 shows the edges of an image based on an edge

detection filter [2], which is used to compare the final result

generated by the C++ code with the MATLAB script.

Figure 3. Erosion and Dilation

Figure 3 shows the erosion and dilation filters

respectively [3] and [4]. Erosion assigns the min value of the

neighborhood to that pixel, while dilation assigns the max

value of the neighborhood to the pixel.

Figure 4. Gamma Correction

Figure 4 shows the Gamma correction for an image [5],

which is used to change the brightness or luminance of the

image according to the following formula and a factor Y =

0.6.

The operations implemented are convoluted with the

kernels shown below.

Figure 5. Erosion and Dilation Kernel

Figure 6. Edge Detection Kernel

Figure 7. 3x3 Average Blur Kernel

Figure 8. 5x5 Average Blur Kernel

Figure 9. Gaussian Blur Kernel

The algorithm used for the different image processing

operations is implemented according to the following

flowchart logic.

Figure 10. Flowchart

Figure 10 shows the logic flowchart used for the

implementation. A binary image file (.bif) is generated by a

desired .jpg from the MATLAB script, then the C++ code

reads the .bif, and gets the input operation number and

desired image size and selects the corresponding operation.

A function is then called utilizing the parallel_for TBB

implementation as well as a function that utilizes the

sequential implementation to compare the processing time. A

binary output file (.bof) is then generated as the final result,

which then is used in the MATLAB script for further

verification.

B. Parallelization Strategy

For the parallelization strategy, parallel_for loop is used
since an operation has to be performed on each individual
pixel, which means multiple pixels could have the same task
performed in parallel. It is ideal since every iteration is

independent, the number of iterations is known due to the
dimensions of the image being known in advance, and every
computation depends particularly on the number of iterations
performed and the input data uses the iteration count as an
index for the operation. The pthreads approach is not used due
to the program functioning with multiple image sizes, and
TBB would take care of assigning the number of threads in a
way that utilize the processor resources more efficiently.

Parallel_for is implemented using a compact lambda
expression [6] which takes the inputs of the convolution
function and calculates the dot product between the image
pixels and the kernel in parallel. This is different than the
sequential approach which calculates the dot product one by
one for each pixel in scope making the calculation time
significantly longer, especially as the size of the image
increases. A different parallel_for approach to parallelize the
inputs and the kernel before doing the dot product was
considered but it created more overhead, which is why the
parallel_for was implemented for the dot product only in this
project.

Figure 11. conv2D_tbb Function

As seen in figure 11, the compact lambda expression
is used in two parallel_for loops to calculate the dot product
in parallel.

Figure 12. conv2DI Function

Figure 12 shows the convolution function utilized in
the parallel_for compcat lambda expression shown in figure
11.

III. EXPERIMENTAL SETUP

The project is implemented on three different devices that

have different processors: Intel Atom Dual Core Processor

N2600 @1.6GHz (Terasic DE2i-150 board), Intel Core i5-

6200U 2-Core Processor @2.30GHz, and AMD Ryzen 9

5900X 12-Core Processor CPU @3.70GHz.

A C++ function is used to output and compare the

processing time results for the sequential and parallel

implementation on the terminal, verify the expected outcome

that the parallel approach is faster than the sequential one,

and to generate .bof files that are used for the MATLAB

script.

The MATLAB script generates the .bif files that are

needed for the C++ code. It also includes an implementation

of the different image processing operations mentioned,

which are then compared to the .bof output files generated

from the C++ code to output the different image results and

to confirm and verify successful implementation.

IV. RESULTS

The processing time data for each of the different
operations and the different image sizes were collected to
verify that the TBB parallel approach was faster than the
sequential approach.

Figure 13. Output on Terminal

Figure 13 shows the processing time output on the
terminal for both the sequential and TBB approaches. The first
run shows the execution command with one argument
“imgProcess”, which warns the user of the modifiers that can
be used, and assigns default values for the modifiers, which
are chosen to be 1 for modifier 1, and 3 for modifier 2.
Modifier 1 is used for the operation number, while modifier 2
is used for the image size. The second run shows the command
with the input users for both modifiers. The results are then
tabulated accordingly.

480 X 307 IMAGE (147,360 ELEMENTS)

Table 1 - Intel Atom Dual Core Processor N2600 @1.6GHz

(Terasic DE2i-150 board)

Table 2 - Intel Core i5-6200U 2-Core Processor @2.30GHz

Table 3 - AMD Ryzen 9 5900X 12-Core Processor CPU

@3.70GHz

640 x 410 Image (565,880 elements)

Table 4 - Intel Atom Dual Core Processor N2600 @1.6GHz

(Terasic DE2i-150 board)

Table 5 - Intel Core i5-6200U 2-Core Processor @2.30GHz

Table 6 - AMD Ryzen 9 5900X 12-Core Processor CPU

@3.70GHz

940 x 602 Image (565,880 elements)

Table 7 - Intel Atom Dual Core Processor N2600 @1.6GHz

(Terasic DE2i-150 board)

Table 8 - Intel Core i5-6200U 2-Core Processor @2.30GHz

Table 9 - AMD Ryzen 9 5900X 12-Core Processor CPU

@3.70GHz

1280 x 820 Image (1,049,600 elements)

Table 10 - Intel Atom Dual Core Processor N2600

@1.6GHz (Terasic DE2i-150 board)

Table 11 - Intel Core i5-6200U 2-Core Processor

@2.30GHz

Table 12 - AMD Ryzen 9 5900X 12-Core Processor CPU

@3.70GHz

1920 x 1230 Image (2,361,600 elements)

Table 13 - Intel Atom Dual Core Processor N2600

@1.6GHz (Terasic DE2i-150 board)

Table 14 - Intel Core i5-6200U 2-Core Processor

@2.30GHz

Table 15 - AMD Ryzen 9 5900X 12-Core Processor CPU

@3.70GHz

As seen from the data collected from tables 1-15, TBB

beats sequential in speed in all cases. As the filter becomes

more complex, the calculation time increases. As seen in

table 1, the time for the 5x5 blur is much higher than the 3x3

kernel, however, the TBB implementation decreases the

calculation time. As seen in table 13, as the image size

increases, so does the calculation time of the operation. This

can be seen between tables 7 and 10, where the time of the

operation is roughly doubled due to the amount of input

elements being doubled. However, as seen in table 13, the

ratio between the speed of the TBB implementation vs the

sequential increases tremendously being more than twice as

fast. Finally, another observation after testing on multiple

devices is that, as the processor core count and speed

increase, the time it takes for both the sequential and TBB

calculations decrease significantly, however the difference

between them is much higher as the TBB becomes more

efficient.

 Figure 14. Original Image Figure 15. Greyscale Image

 Figure 16. Dilation Figure 17. Erosion

Figure 18. Gamma Figure 19. Edge Detection

 Figure 20. 3x3 Averaging Blur Figure 21. 5x5 Averaging Blur

Figure 22. Gaussian Blur

Figure 14 shows the original input image that was used to

implement the operations on [7]. Figure 15 shows the

grayscale image generated in MATLAB. Figures 16 – 22

show the different image processing operations applied,

which are generated in MATLAB using the output .bof files

from the C++ code and compared to the images generated

using the MATLAB functions.

Results conclude that TBB is faster/better than sequential

in image processing operations. As image size or number of

elements increase, processing time increases and TBB

becomes much more efficient than sequential. As the count

of the process cores and speed increase, the computation time

for the operation decreases.

CONCLUSIONS

In summary, parallel programming is a much more

efficient approach than sequential for image processing.

Different factors such as the image size or number of

elements, different processors’ core count and speed play a

significant role in the operation calculation time.

Future improvements include additional image

processing operations and performing multiple operations

consecutively to do more complex applications such as object

detection which would utilize multiple different kernels. A

MATLAB script could then be improved to convert a .bof file

generated from the C++ code back to a .bif file that the code

can use again to perform the next operation. To improve the

parallel strategy, a parallel pipeline could be used to assist in

indexing the input pixels concurrently, which would not

speed up the calculation time of the operation itself, but could

improve the loading time for very large images. Finally, a

Graphical User Interface (GUI) can be implemented for a

more user-friendly image processing tool.

REFERENCES

[1] Scott Rome, “Why blurring an image is similar to warming your coffee,”
Scott Rome, https://srome.github.io/Why-Blurring-an-Image-is-
Similar-to-Warming-Your-Coffee/ (accessed Dec. 10, 2023).

[2] Edge detection of image using opencv (CV2) in Python,

https://www.includehelp.com/python/edge-detection-of-image-using-
opencv-cv2.aspx (accessed Dec. 10, 2023).

[3] “Erosion,” Morphology - Erosion,

https://homepages.inf.ed.ac.uk/rbf/HIPR2/erode.htm (accessed Dec.
10, 2023).

[4] “Dilation,” Morphology - Dilation,
https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm (accessed Dec.
10, 2023).

[5] “Imadjust,” MathWorks,

https://www.mathworks.com/help/images/gamma-correction.html
(accessed Dec. 10, 2023).

[6] D. L. Obregon, TBB: parallel_for, Tutorial 5,

https://www.secs.oakland.edu/~llamocca/Tutorials/Emb_Intel/Tutoria
l%20-%20Unit%205.pdf (accessed Nov. 15, 2023).

[7] “New Deck for chanhassen couple,” Iron River Construction,

https://ironriverco.com/featured-projects/new-deck-gives-chanhassen-
couple-space-to-host-outdoors/ (accessed Dec. 10, 2023).

