CAN DATA PROCESSING

Trey Plichta & Adam Jesse

Objective:

- Perform simultaneous calculations on a large dataset obtained from a 2012 Chevrolet Malibu's CAN bus.
- Target signals include engine speed, vehicle speed, engine coolant temperature, fuel tank level, and trip distance

General Data Analysis:

• Minimum, Maximum, and Average for every signal.

In-Depth Calculation and Data Analysis

• Acceleration using vehicle speed and timestamp. Driving flags raised for hard acceleration and hard braking.

Histogram Generation:

• Created a histogram for engine speed, vehicle speed, and acceleration where intervals were established over a specified range, showcasing the distribution of engine speed, vehicle speed, and acceleration data.

Parallel Computation with TBB:

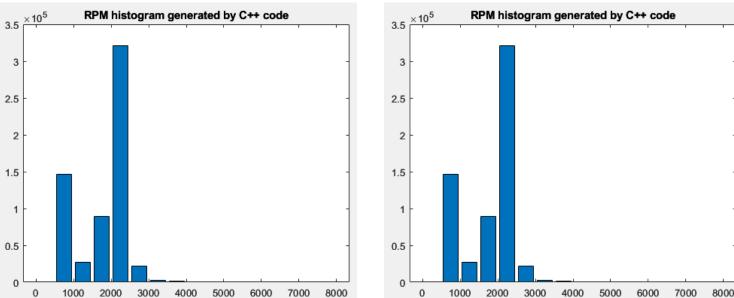
 Applied TBB's parallel for and parallel reduce techniques to enhance the efficiency of data processing tasks

Overall Diagram

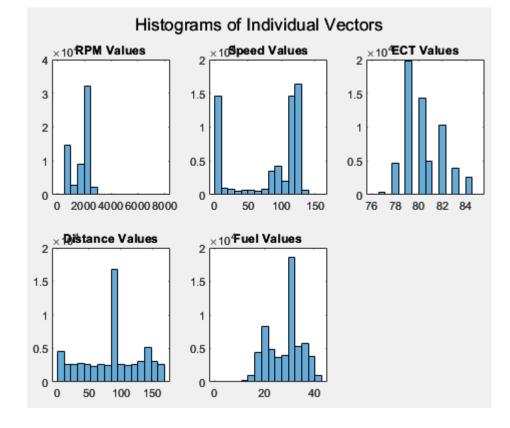
• Stage 1 (Obtain 305,000 data points from vehicle)

- Vehicle Speed
- Engine Speed
- Engine Coolant
 Temperature
- Fuel Level Percentage
- Trip Odometer
 Sampled every 0.1 sec
- Stage 2 (Read in text file & expand data set with a multiplier based on user input; done in C)

[1,2,3,4] with "N Multiplier" = 2 -----> [1,2,3,4,1,2,3,4]


Overall Diagram Continued...

- Stage 3 (Computations in C; print to terminal;
 - write .bof for histograms)


Max Engine Speed: 4590.5rpm at 7997.23s Max Vehicle Speed: 135kph at 8248.04s Max Fuel Percentage: 42.3529% at 133.822s Max ECT: 85 Degrees Celsius at 5446.32s Max Distance Travelled: 169km at 8590.41s

> Hard Acceleration = 360 Hard Braking = 80 Cruising = 11840

• Stage 4 (Graphing in MATLAB)

• Stage 5 (Verification of computational accuracy in MATLAB)

Algorithm – Sequential Computations

Step 1

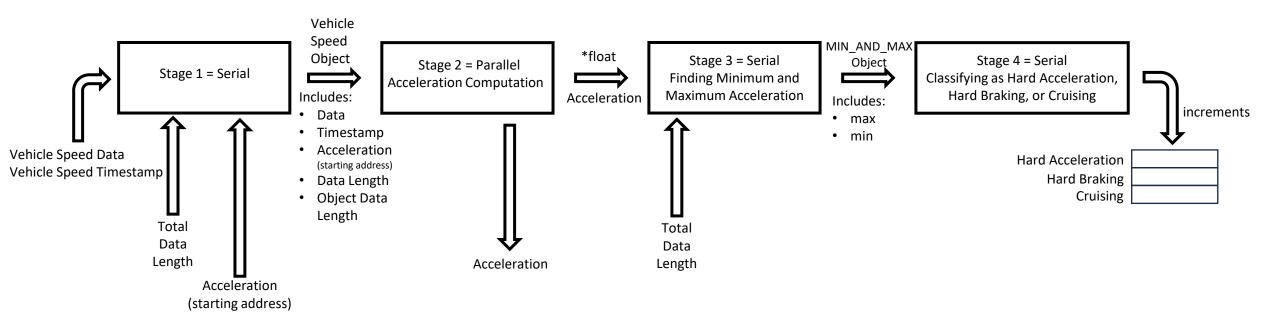
- Use findMax function to get maximum for every signal
- Use findMin function to get minimum for every signal
- Use findAvg function to get average for every signal

Step 2

- Use for loop to get acceleration for every vehicle speed data point
 acceleration[i] = ((Vehicle_Speed.Data[i+1] Vehicle_Speed.Data[i]) / ((Vehicle_Speed.timestamp[i+1] Vehicle_Speed.timestamp[i])*3.6);
- Divide acceleration data into 10 second chunks (100 points per chunk)
 - Find min and max within each chunk
 - Categorize as hard braking if min < -5.4 m/s
 - Categorize as hard acceleration if max > 2.7 m/s (0-60 mph in 10 sec)

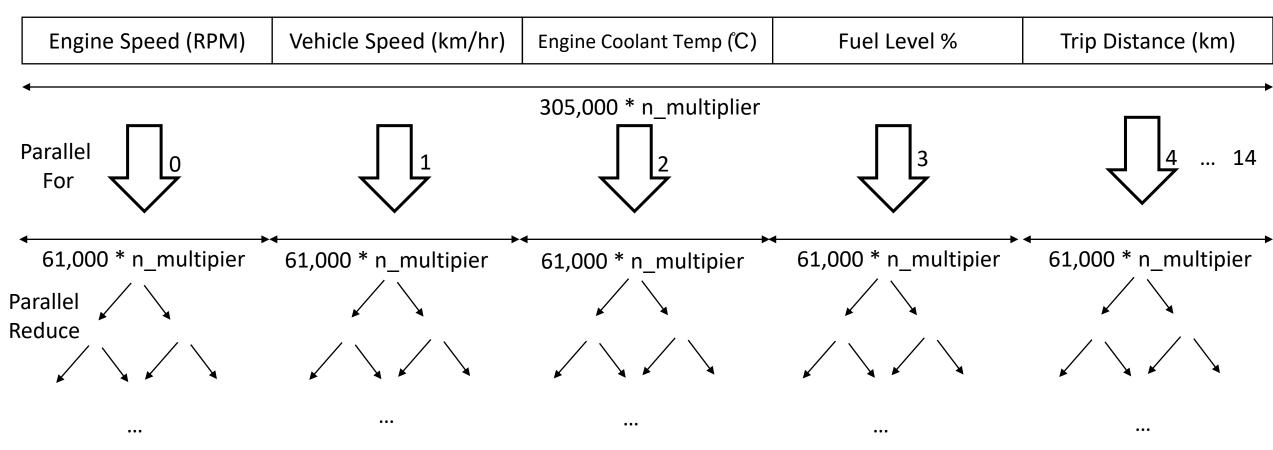
Algorithm – Sequential Computations

Step 3


- Use CreateHistogram function to create histogram for engine speed, vehicle speed, and acceleration
 - Engine Speed Range = 0 8000 rpms w/ bins every 500 rpms
 - Vehicle Speed Range = 0 160 km/hr w/ bins every 10 km/hr
 - Acceleration Range = $-10 10 \text{ m/(s^2)} \text{ w/ bins every 1 m/(s^2)}$

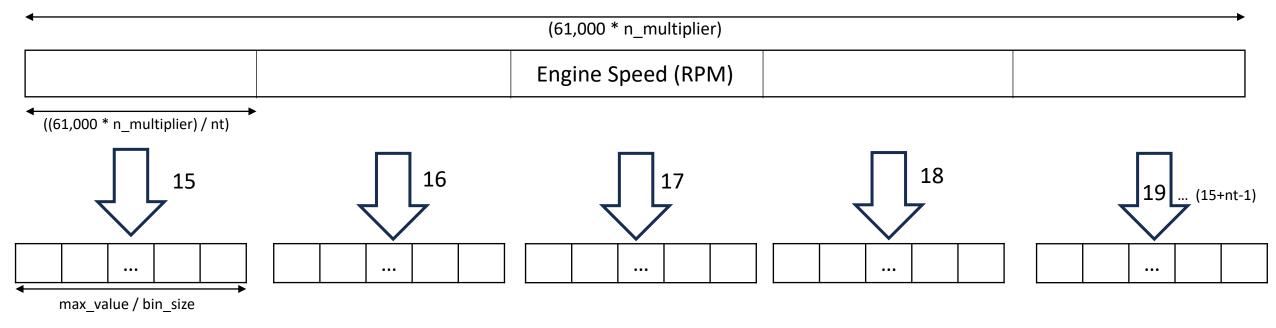
Step 4

• Display results to terminal


Parallelization Strategy – Part 1 – Pipeline

- Parallel Pipeline used for the acceleration computations and driving analysis.
 - Acceleration calculation stays the same as before
 - However, it is done in a parallel pipeline state to increase computation time
 - The length of the input vectors will be 61000 * n_multiplier.
 - Each Vehicle Speed Object will be packed with 100 data points.
 - Acceleration saved for other computations to use.

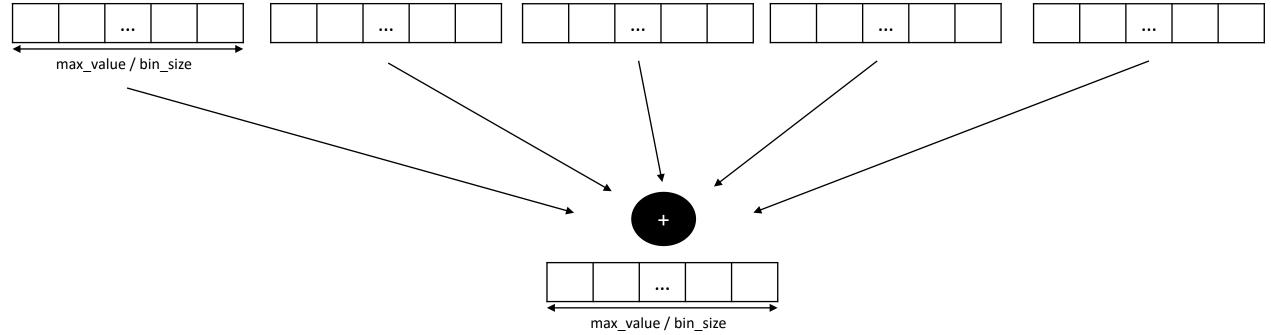
Parallelization Strategy – Part 2 – Main Parallel_for Loop


• Calculates maximum, minimums, averages, and partial histograms concurrently

To get a min, max, and average for each value

Parallelization Strategy – Part 2 – Main Parallel_for Loop


• Calculates maximum, minimums, averages, and partial histograms concurrently



- This part was repeated for Vehicle Speed and Acceleration
 - Engine Speed (15):(15+nt-1)
 - Vehicle Speed (15+nt):(15+(2*nt)-1)
 - Acceleration (15+(2*nt)):(15+(3*nt)-1)

Parallelization Strategy – Part 3 – Histogram Generation

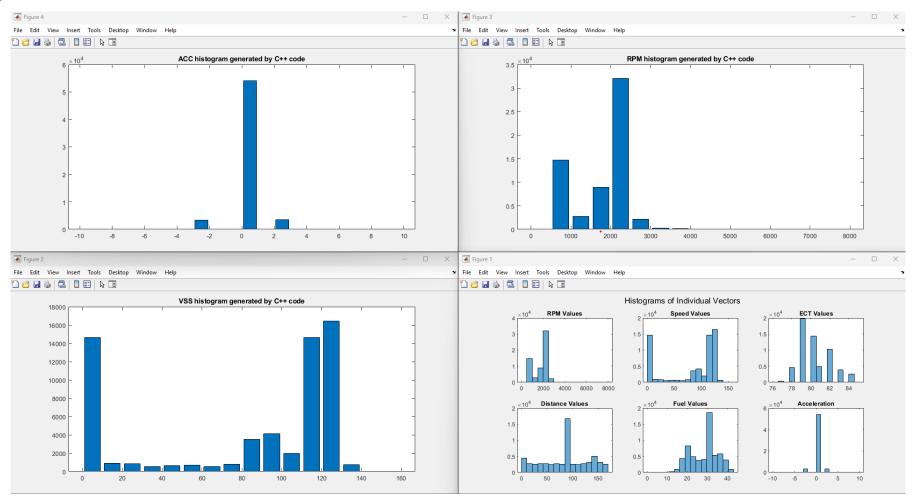
- Reduction was implemented to reduce all the partial histograms of Vehicle Speed, Engine Speed, and Acceleration into 3 final histograms
 - An example of one is shown below going from nt partial histograms to one final histogram
 - The three reduction processes were implemented sequential

Results Computational Accuracy

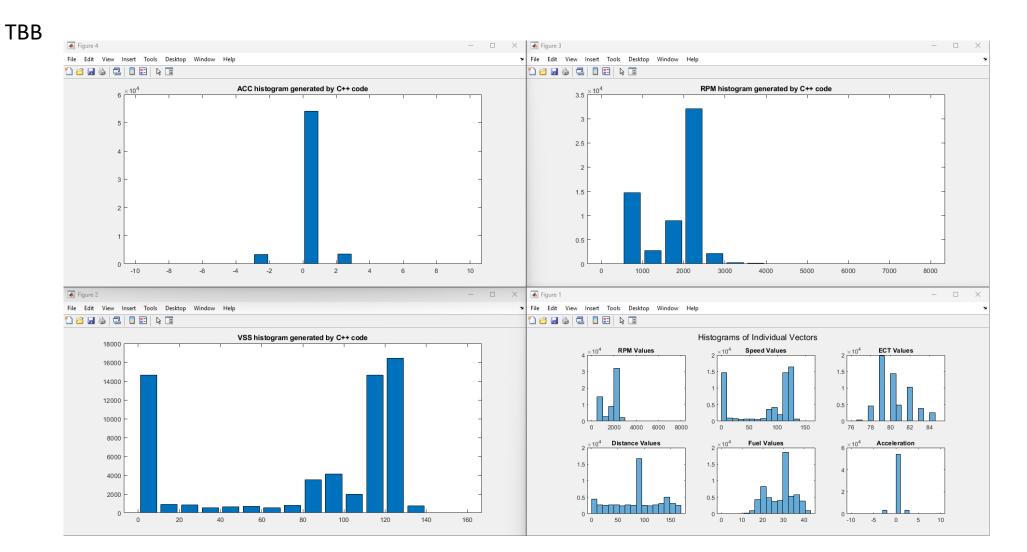
Sequential

Hard Acceleration = 18 Hard Braking = 4	Hard Acceleration = 18 Hard Braking = 4	Average rpm 1751.5629
Cruising = 592	Cruising = 592	Average Vehicle Speed 8
Max ValuesMax Values	Max ValuesMax Values	Average ECT 80.2756
Max Engine Speed: 4590.5rpm at 7997.23s Max Vehicle Speed: 135kph at 8243.65s	Max Vehicle Speed: 135kph at 8243.65s	Max rpm: 4590.5
Max Fuel Percentage: 42.3529% at 40.4935s	Max Fuel Percentage: 42.3529% at 40.4935s	Max Vehicle Speed: 135
Max ECT: 85 Degrees Celsius at 5180.43s Max Distance Travelled: 169km at 8552.07s	Max ECT: 85 Degrees Celsius at 5180.43s Max Distance Travelled: 169km at 8552.07s	Max Engine Coolant Temp
Max Distance Travelled: 109km at 0552.075		Max Vehicle Distance: 1
Min Values	Min ValuesMin Values	Max Fuel Level Percenta
Min Engine Speed: 687rpm at 5484.05s Min Vehicle Speed: 0kph at 0.040112s	Min Vehicle Speed: 0kph at 0.040112s	Min rpm: 687
Min Fuel Percentage: 1.96078% at 7976.77s	Min Fuel Percentage: 1.96078% at 7976.77s	Min Vehicle Speed: 0
Min ECT: 76 Degrees Celsius at 38.3815s Min Distance Travelled: 0km at 0.076763s	Min ECT: 76 Degrees Celsius at 38.3815s Min Distance Travelled: 0km at 0.076763s	Min Engine Coolant Temp
		Min Vehicle Distance: 0
Avg Values		Min Fuel Level Percenta
Avg Engine Speed: 1751.57rpm Avg Vehicle Speed: 80.7815kph	Avg Engine Speed: 1751.57rpm Avg Vehicle Speed: 80.7815kph	Min Acceleration below
Avg Fuel Percentage: 28.5279%	Avg Fuel Percentage: 28.5279%	4
Avg ECT: 80.2756 Degrees Celsius Avg Distance Travelled: 85.616km	Avg ECT: 80.2756 Degrees Celsius Avg Distance Travelled: 85.616km	
		Max Acceleration above

TBB


MATLAB

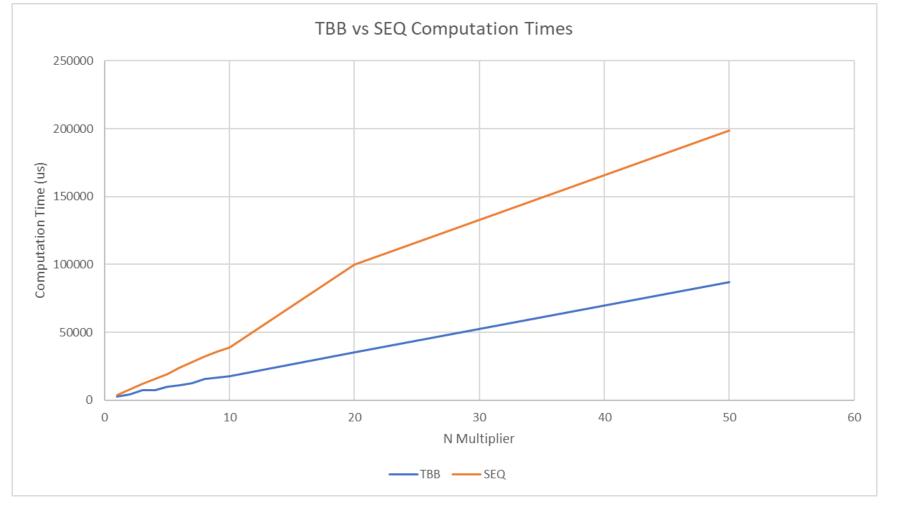
80.7815 5 mperature: 85 169 age: 42.3529 mperature: 76 0 age: 1.9608 w -5.4:


2.7: 18

Results Computational Accuracy

Sequential

Results Computational Accuracy


Results – Intel i7-9750H

TBB								
Partial Histograms	Time (us)							
n_multiplier	1	2	3	5	10	20		
1	2676	5654	7220	11972	19940	41966		
2	2760	3782	6231	10856	20901	35039		
3	2883	4760	6011	11248	17781	37393		
4	2519	4213	7247	9817	17770	35012		
5	2407	3658	5884	10051	27005	33910		
6	2398	3969	6029	9141	18525	35762		
7	2670	3902	5813	9036	17473	34254		
8	2474	3851	6012	9517	17920	34106		
9	2584	3575	5667	9758	18406	34375		
10	2369	4501	5478	11677	19067	34794		
Sequential	3865	7639	11746	19428	38947	99799		

Results – Intel Atom N2600

TBB								
Partial Histograms	Time (us)							
n_multiplier	1	2	3	5	10	20		
1	52255	79130	124571	196808	393620	700837		
2	43241	74653	114854	178859	364176	700975		
3	38822	75983	111964	179158	374134	674151		
4	41780	73932	110953	181367	354300	661860		
5	38122	75849	112523	175732	321321	666547		
6	43029	73381	104755	167970	333460	707556		
7	39735	73439	105001	174309	349233	667655		
8	40941	74566	106476	172085	349536	698942		
9	39208	71427	106097	170767	325624	667857		
10	40492	68626	110670	174775	334168	664871		
Sequential	67451	111742	137725	229263	458284	916667		

Results – TBB vs Sequential Computation Times

*Intel i7-9750H *4 Partial Histograms

DEMO