
CAN Data Processing

Sequential vs Parallel implementation

List of Authors (Adam Jesse, Trey Plichta)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: ajesse@oakland.edu, treyplichta@oakland.edu

Abstract——For this project we will read sample CAN data

from a test file and perform calculations in C++ using the data.

We will compute the minimum, maximum, and average values

for the signals. Acceleration will also be computed using vehicle

speed at certain times. Acceleration results will be used to

analyze the driving patterns and find periods of hard braking

and hard acceleration. Additionally, histograms will be

computed for engine speed, vehicle speed, and acceleration. We

will perform these computations using a sequential and parallel

approach to compare computation time. The parallel approach

will be done using Intel’s oneAPI Threading Building Blocks.

Additionally, a MATLAB script will be created to verify the

computational accuracy of the C++ programs.

I. INTRODUCTION

In the landscape of automotive technology, the efficient
analysis of Controller Area Network (CAN) data plays a
pivotal role in understanding and optimizing vehicle
performance. This project shows the capabilities of C++
programming in handling and interpreting CAN data. As
vehicles become increasingly sophisticated, the need for
robust data processing tools becomes more apparent, and this
project addresses this demand by employing a parallelization
strategy. The utilization of a multi-stage pipeline and
parallel_for loops not only exemplifies the power of C++
programming and its potential in optimizing performance for
automotive data analysis.

The findings presented in this project come from the
analysis conducted on two distinct processors—a 6-core Intel
i7-9750H and an Intel Atom N2600. The strategic
implementation of Intel's Threading Building Blocks (TBB)
approach yields reductions in computation times, highlighting
the effectiveness of parallel computing strategies in enhancing
overall computational efficiency. The incorporation of a
MATLAB script verification process adds an extra layer of
confidence in the accuracy and reliability of the C++
programs.

II. METHODOLOGY

A. Data Collection

Data was collected from the controller area network
(CAN) of a 2012 Chevrolet Malibu. The standard on-board
diagnostics services were used to collect certain information.
ODB-II offers service 0x01 (show current data) with
parameter identifiers (PID) to specify requested data. Vehicle

data recorded was engine coolant temperature (PID 0x05),
engine speed (PID 0x0C), vehicle speed (PID 0x0D), fuel tank
level input (PID 0x2F), and distance traveled since diagnostic
trouble codes (DTCs) were cleared (PID 0x31).

The method of data collected utilized a few different tools.
The first being Tracetronic’s ECU-TEST software connected
with a PEAK Systems PCAN-USB tool. Using ECU-TEST a
test case was created to first clear DTCs and request each
signal with a 100-millisecond delay between each request to
give the engine control module enough time to respond. This
part of the loop ran during the entire length of the drive. ECU-
TEST records all data on the bus while this testcase is active
and places the data in a text file.

To analyze the text file and filter out unwanted data, a
simple Python script was used. The Python script would then
generate a new text file with the data formatted into three
columns: timestamp, identifier, data value. This text file
would be read into the C++ program to be further analyzed.

B. Common Set-Up

 As described above, there is data from five PIDs/signals

stored in an input text file. The program first creates five

variables of the data type of a user defined structure called

DATA1. DATA1 includes arrays fields for data, PID,

timestamp, and an individual variable for datalength. The

program first opens the text file, counts the number of each

of the five PIDs, and stores that number in the datalength

variable for each PID structure. As part of the input from the

user, the program collects an input called n_multiplier. This

is how many times the user would like to copy the data from

the text file, to have a sufficient data size to ultimately

compare computation times. This means that the structures

that hold the data are dynamically allocated to hold input

datalength of that PID multiplied by n_multiplier. Now that

memory has been properly allocated, the program can reopen

the text file and read the entirety of text file, sorting by PID.

Next, the program uses the duplicateArray function to copy

the original data into the empty locations previously

allocated. This copy and paste process is repeated

n*multiplier times. So, if the input data from the text file was

{1,2,3,4} and n*multiplier was 2; the data array would look

like {1,2,3,4,1,2,3,4} after this step was complete. Finally,

memory was allocated for the results of the computations.

This included locations for acceleration and the three

histogram results.

C. Sequential Approach

With the sequential approach, set-up is complete, and

computations can be implemented. The first set of

calculations is the maximum vehicle speed, maximum engine

speed, maximum engine coolant temperature, maximum fuel

level, maximum distance travelled, minimums for every

signal, and averages for every signal. The maximums and

minimum functions simply implements a for loop that

compares every data point and keeps the max or min. The

average function uses a for loop to add every data point and

divides the datalength. The next set of calculations is the

acceleration data. Since the DATA1 structure keeps a

timestamp for every data point in addition to the normal data,

the acceleration can be computed as change in vehicle speed

over change in time (*3.6 to get result in m/(s^2)). The

accelerations are chunked off into sets of 100, since the data

is sampled every 0.1 seconds the chunks are 10 seconds long.

The maximum and minimum of each chunk is computed.

Finally, these numbers are compared to 2.7 m/(s^2) and -5.4

m/(s^2), respectively, to see if the 10 second segment should

be categorized as a hard breaking event, hard acceleration

event, or good driving event. The final stage of the sequential

calculations involves finding the histogram of engine speed,

vehicle speed, and acceleration. Engine speed has a range of

0 to 8000 rpms with bins every 500 rpms. Vehicle speed has

a range of 0 to 160 km/hr with bins every 10 km/hr.

Acceleration has a value of -10 m/(s^2) to 10 m/(s^2) with

bins every 1 m/(s^2). This concludes the sequential

computations.

D. TBB Approach

The same calculations just described in the sequential
approach section are done with the TBB approach. However,
this approach uses many instances of parallelization. First
some extra memory must be allocated for the TBB approach.
This includes a 2-D array called A that simply stacks the
engine speed, vehicle speed, ECT, fuel level, and distance
travelled data on top of each other. This is done so the
parallel_for in part two has an easy way to pass the data to
function it calls. Additionally, memory must be allocated for
the partial histograms. There is a user input nt which is the
number of partial histograms that the user wishes to compute
in an attempt to optimize the program. The memory allocation
uses the nt input to allocate the correct amount. The
parallelization will be broken down into three parts: a four-
stage parallel pipeline which deals with the acceleration data,
the main parallel_for loop which deals with the min, max, and
calculations in addition to partial histograms for the final
histograms, and a parallel reduction which is used in the
calculation of every final histogram.

Beginning with the parallel pipeline, let’s dive into figure
1. The parallel pipeline is broken up into 4 stages. The first is
a serial_in_order stage that has input parameters that include
pointers to the vehicle speed data vector, vehicle speed

timestamp vector, acceleration vector (currently empty), and
an int for datalength. Stage 1 packages this all up into groups
of 100 and passes it off to stage 2 in an object of class Vehicle
Speed. Stage 2 is a parallel stage which does the computation
for acceleration. With the information received from stage 1,
stage 2 can compute acceleration as the change in vehicle
speed over the change in time (*3.6 to get result in m/(s^2)).
It also knows where to store this acceleration data and sends
the pointer to stage 3. Stage 3 is a serial_in_order stage that
takes the acceleration data for the package of 100 and
computes the maximum and minimum value out of that 100.
It then wraps them up into an object of class
MIN_AND_MAX and sends to stage 4. Stage 4 compares the
min and max to -5.4 and 2.7, respectively, to make
classifications for hard braking and hard accelerations events.
This concudes the parallel pipeline.

The second part of the parallelization is detailed in figures
2 and 3. It is a parallel_for loop which optimizes the
calculation of the minimums, maximums, averages, and
partial histograms. The minimums, maximums, and averages
all nest a parallel_reduce; the min and max to do multiple
comparison at once and the average to do many sub-sums at
once. This means that not only can minimums of different
signals be computed at once, but multiple comparisons can be
made at once to find the smallest value. This is all shown in
figure 2 as the parallel_for loop increments from 0 to 14.
Finally, figure 3 shows the partial histogram calculations. We
know that the user uses an input nt to request a certain number
of partial histograms be made. Therefore, as parallel_for loop
increments from 15 to 15+(nt-1) the partial histograms for
engine speed are updated. As it increments from 15+(2nt-1)
the partial histograms for vehicle speed are updated. Finally,
as it increments from 15+(2nt) to 15+(3nt-1) the partial
histograms for acceleration are made. This concludes the main
parallel_for section.

The last part of the parallelization strategy involves using
parallel_reduce to combine the partial histograms into one
final histogram. This means that if nt is equal to 4, engine
speed partial histogram 1 can be added to partial histogram 2
while 3 is added to 4, and the results added together. This
would save one set of the addition operation across the partial
histogram vector as opposed to doing it sequentially and only
increases in savings as nt is increased. This partial histogram
reduction is done for engine speed, vehicle speed, and
acceleration. The three sets of reductions are optimized within
but execute sequentially when looking across the bunch. One
potential improvement area could be implementing a
parallel_for loop that allows this three reductions to be
executed in parallel.

E. Common Clean_up

To clean up the program, the results computed are printed
to the terminal. The number of instances of hard acceleration,
hard breaking and cruising are printed using the
pipeline_result vector indices 0, 1, and 2 respectively. Next
the minimum and maximum indexes are assigned to the
respective signal index variable using the max and min arrays.
Using the indices, the proper array can be indexed to print out
the corresponding minimum and maximum value.

The average values are displayed using the avg array that
contains the values themselves as opposed to the indices. The
3 histograms that are outputted as .bofs are printed using the
bin size variables, max value variables, and histogram arrays
for the corresponding signal. After the histograms are
displayed, the vectors are written to .bofs using the fwrite C++
function.

The start and end times are printed as well as the elapsed
time to compare against both approaches. The start time is
taken before the actual computations directly after the end of
the common setup. The end time is taken right before the start
of the common clean up.

The last step is to free the dynamically allocated memory
by using the free C++ function.

III. EXPERIMENTAL SETUP

A MATLAB program is used to verify results of the C++
program. The MATLAB program reads the same data text file
that is used in the C++ program. Using the table2array
function and indexing the correct column of the table, three
arrays are created for time, identifier, and data value. The data
value array is split into five arrays corresponding to the PID.
Using these arrays, the minimum, maximum, and average
values are found using the built in min, max, and mean
MATLAB functions and printed to the terminal.

The acceleration is found using the same algorithm of
point slope formula used in the C++ program. This is done by
finding the rows of the data table where the PID is equal to 13
and storing the time stamps in these rows into a new time
vector labeled time_speed. To create a vector of the time
difference between each point, the diff MATLAB function
was used on both the time_speed vector and the speed_values
vector and stored in dt and dv respectively. Using dt and dt,
acceleration can easily be computed using the element-wise
division ./ of dv over dt with dt multiplied by 3.6 to covert to
meters per second. Next to verify the driving flags given by
the C++ program, the instances of hard acceleration and
deceleration are found. This can be done by setting a
group_size of 100 which is equivalent to the length of the
arrays that are fed into the parallel pipeline. The number of
groups is found by taking the floor of the acceleration vector
length divided by the group_size. Using the number of groups,
two zero arrays are created for minimum acceleration and
maximum acceleration. Next a loop iterates from 1 to
num_groups setting start_idx equal to the current iteration
minus 1 multiplied by the group size plus 1. An end index is
created as the current iteration multiplied by group. This
allows the acceleration vector to be broken into segments of
100 values. The maximum and minimum values of each
segment are stored in the max_acceleration and
min_acceleration variables. The maximum and maximum
values are narrowed down further to minimum values less
than -5.4 and maximum values greater than 2.7. The lengths
of the filtered minimum and maximum vectors indicate the
number of hard acceleration and hard deceleration.

The last verification calculations needed are the
generations of histograms. 6 histograms are made for data
values of RPM, speed, ECT, distance traveled, fuel

percentage, and acceleration. The histogram MATLAB
function with parameters of the corresponding data vectors
and bins is used to create the histograms. The last 3 histograms
are generated by reading in the binary output files (.bof) from
the C++ program. The fopen and fread MATLAB functions
are used to read in the files and extract the data. By comparing
all the histograms, the accuracy of the C++ program can be
verified.

IV. RESULTS

To compare the sequential programming approach and the
TBB program approach, each program was run multiple times
with varying parameters. The sequential program was run
with the parameter of n_multiplier equal to 1 through 10 as
well as 20 and 50. The TBB program was run with the same
n_multiplier values but at each value, the parameter indicating
the number of partial histograms is incremented from 1 to 10.
The table with results from a 6 core Intel i7-9750H are shown
in Table 1. The results from the Terasic DE2i-150 FPGA
Development kit using the Intel Atom N2600 processor are
shown in Table 2.

Table 1 – Computation times for Intel i7-9750H

Table 2 - Computation times for Intel N2600

Table 1 and Table 2 show how dominate the TBB
approach is especially for larger values of n_multiplier. The
processing time of the N2600 for 6 million elements and
optimal number of partial histograms (10) takes about 665
milliseconds to process where the same calculations using a
sequential approach takes 917 milliseconds which is roughly
a 38% increase.

A line graph showing the computation times as
n_multiplier increases for a 6 core Intel i7-9750H, and 4
partial histograms is shown in graph 1. This shows that even
for small values of n_multiplier, TBB is the optimal approach.

Graph 1 – Sequential vs TBB computation times

V. CONCLUSIONS

 This project dives into automotive data analysis,

showcasing the versatility of C++ programming in handling

and interpreting CAN data. The parallelization strategy,

implemented through a multi-stage pipeline and parallel_for

loops, showcases the potential for optimizing performance.

The results obtained from a 6-core Intel i7-9750H and an

Intel Atom N2600 processor come together to support the

TBB approach, with significant reductions in computation

times. Additionally, the verification process using a

MATLAB script adds an extra layer of confidence in the

accuracy of the C++ programs, emphasizing the importance

of cross-validation in data analysis projects. In conclusion,

this project not only contributes to the field of automotive

data analysis but also shows the importance of adopting

parallel computing strategies for enhanced computational

efficiency.

REFERENCES

[1] Llamocca, D. (n.d.). High-performance embedded programming with

the Intel Atom Platform.
https://www.secs.oakland.edu/~llamocca/emb_intel.html

[2] Wikimedia Foundation. (2023, November 22). OBD-II Pids.
Wikipedia. https://en.wikipedia.org/wiki/OBD-II_PIDs

[3] Intel® oneapi threading building blocks. Intel. (n.d.).
https://www.intel.com/content/www/us/en/developer/tools/oneapi/one
tbb.html#gs.26ck4i

Appendix

Figure 1 – Parallel Pipeline – TBB Approach Part 1

Figure 2 – Main parallel_for – TBB Approach Part 2

Figure 3 – Main parallel_for – TBB Approach Part 2

Figure 4 – Parallel Reduction – TBB Approach Part 3

Figure 5 – Computational Accuracy Verification for Max, Min, Avg, and Driving Analysis

Figure 6 – Computational Accuracy Verification for Sequential Histograms with MATLAB (bottom right)

Figure 7 – Computational Accuracy Verification for Parallel Histograms with MATLAB (bottom right)

