
Multi-Threaded Basic File Encryptor and Decryptor Program

Steven Stefanovski, Wendy Fogland
Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: stefanovski@oakland.edu, wtfogland@oakland.edu

Abstract—This project aims to develop a multi-threaded
program that can decrypt and encrypt text files using a cipher
algorithm. Two parallelization strategies are explored and
implemented in the program to provide benchmark testing
results compared to a conventional sequential implementation
method. It was concluded that one of the parallelization
implementations provides higher performance of
encrypting/decrypting. The program is written in C++ and
utilizes the Intel TBB library.

I. INTRODUCTION
Data security and integrity are important topics as more of
our everyday lives are integrated with use of technology.
Companies and end-users are becoming more aware of the
significance of protecting digital assets as situations like
data breaches, data leaks, and identity theft are becoming
more common. Therefore, the tangibility and emphasis in
protecting a person’s data has increased. This paper looks at
a basic implementation along with the performance of a
program with the ability to encrypt and decrypt text files
using parallelism. A sequential method is used to compare
the performance of the parallel strategies that would be
typically found.

II. CAESAR AND VIGENÈRE ALGORITHMS

It was determined that in order for the program to provide
encryption and decryption capabilities in the scope of .txt
files that could contain letters, numbers, and special
characters that a Caesar and Vigenère cipher algorithm
combination would achieve this. It is expected that the .txt
files inputted into the program are large, therefore a
multi-threaded approach is necessary to achieve efficient
processing ability for decrypting and encrypting the files.

A Caesar cipher works by “shifting” letters. Each letter is
shifted by a fixed number of positions, which then encrypts
the word. The algorithm for the encryption process can be
written as the following:

𝐸
𝑛
(𝑥) = (𝑥 + 𝑛) 𝑚𝑜𝑑26

This shows the encryption of a letter, x, shifted by n. The
traditional Caesar Cipher assumes the letters A-Z are
mapped to numbers 1-26. We will be modifying this slightly
so that the letters of the alphabet use their ASCII (American
Standard Code for Information Interchange) values, instead.
The equation below shows our modified approach.

𝐸
𝑛
(𝑥) = ((𝐴𝑆𝐶𝐼𝐼 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥) + 𝑛) 𝑚𝑜𝑑 255

In contrast, the algorithm for decrypting can be seen as the
following. The process is similar to encrypting, but instead
is shifting back the letters to their original positions based
on the number, x, as an input:

𝐷
𝑛
(𝑥) = ((𝐴𝑆𝐶𝐼𝐼 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥) − 𝑛) 𝑚𝑜𝑑 255

A Vigenère cipher utilizes a key to perform different Caesar
ciphers on each character of the input text. Each character of
the key determines the shift of the Caesar cipher of an
individual character of the input text. Letters are mapped to
numbers 1-26, so the letter “A” in a key would indicate a
shift of 1 for the character. For example, if the input text is
“ENCRYPTION” and the key is “ABC”, the “E” of the
input text would be Caesar Ciphered by 1, the first “N” by
2, and the “C” by 3. Once the key reaches its end, the key is
used again from the beginning, until every character of the
input text has been ciphered. The equation below more
clearly summarizes this concept:

𝐸
𝑛
(𝑥) = (𝑥

𝑛
+ 𝐾

𝑛 𝑚𝑜𝑑 (𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐾)
) 𝑚𝑜𝑑 26

where

x: input text, with letters A-Z mapped to 1-26

K: key text, with letters A-Z mapped to 1-26

n = 1 to length of x

: the encrypted value of the input, x𝐸
𝑛
(𝑥)

We will slightly modify this approach to use ASCII values
instead, so:

𝐸
𝑛
(𝑥) = ((𝐴𝑆𝐶𝐼𝐼 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥

𝑛
) + (𝐴𝑆𝐶𝐼𝐼 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐾

𝑛
)) 𝑚𝑜𝑑 255

Figure 1 shows a table of the ASCII value for each char
(symbol/letter).

mailto:stefanovski@oakland.edu
mailto:wtfogland@oakland.edu


Figure 1: ASCII Table of values for characters

To serve as a proof of concept and to test against the actual
software, a sequential MATLAB implementation was
developed. Figure 2 shows the output of this MATLAB
implementation. The MATLAB script reads in a text file and
encodes the text using an ASCII Vigenère Cipher with a key
of “chicken”. It then takes the encrypted text and decrypts it
back to its original form using the same key.

Figure 2: Text from an input file, its encrypted version, and
decrypted version

III. PARALLELIZATION STRATEGIES
In a sequential execution, it is expected that the time it
would take to encrypt a larger text file to be considerable.
Therefore, a multi-threaded technique for this style of
encryption can optimize the execution time significantly.

Two different parallelization strategies are used and
compared: pipelining and parallel_for.

First, a 3-stage pipeline will be implemented to encrypt or
decrypt the given text. Similar to Lab 7, stage 1 gets a
portion of the input characters as a vector and feeds it into
the pipeline. Stage 2 encrypts or decrypts the character
array. Stage 3 concatenates the character arrays back into
one character array. Figure 3 shows a block diagram of this
process.

Figure 3: Block Diagram of the pipelining process

The second parallelization strategy utilized was simply
using parallel_for in the TBB library. Parallel_for is well
suited for this application, since every calculation to
encrypt/decrypt a single character of the input text is
independent and can be calculated on its own. Since each
character can be independently encrypted and the same
computation is done to all the characters, parallel_for can
easily divide up the iterations to execute parallelly.

IV. OVERVIEW OF SOFTWARE
Figure 4 has a basic overview of the program’s execution
flow. Ease of use for the program was emphasized as the
execution was to be run multiple times in a row to get an
average of the timing during testing. Some code was reused
from previous labs. The functions to read and write the text
files were the same in multiple previous labs, and the
pipelining portion of the code was modeled after Lab 7.



Figure 4: General Flowchart of the encryption/decryption
process

V. SOFTWARE COMPILER SETUP
For the program that was developed to be executed and
tested, a makefile was created. This makefile configuration
was tailored to be used with a g++ compiler as special
compiler tags are required. These tags are required in order
for the Intel TBB library to be used. The makefile contents
can be seen in Figure 5.

Figure 5:Makefile used to compile the software

VI. PERFORMANCE BENCHING SETUP
An Intel Atom N2600 Development and Education Board
was utilized to run and benchmark the program developed in
this project. The basic specifications of the board can be
found below:

● Operating System: Ubuntu 12.04
● 64MB SDRAM x2
● 2MB SSRAM x2
● Dual-Core Processor (Max 1.6GHz)

This hardware was chosen based on what was already being
used in class for prior homeworks and labs for timing
performance and implementation purposes. Furthermore, the
use of the Intel TBB library was necessary for this project
and can be used on the board’s processor.

To determine the performance of each method of
implementation of the cipher algorithm, the “sys/time.h”
library was used. Using the “gettimeofday” functionality of
the library around just the commutation for each method,
the time of execution is calculated in microseconds. Figure
6 shows the use of “gettimeofday” for the sequential
method.

Figure 6: Formatting of use of “gettimeofday” example in
code

In order for the performance of each method to be apparent,
different sized input .txt files were utilized. The .txt files
were generated using a Lorem Ipsum generator which is a
standard dummy text typeset to provide normal distribution
of letters and characters. This allows for large .txt files sizes
where spaces, uppercase letters, lowercase letters, and
special characters can be found.

To increase variation of dataset, the following .txt files with
a wide range of sizes were determined in Table 1.

File Name File Size

lorem 4 kB

lorem_long1_7MB 1.7 MB

lorem_long10MB 10 MB

Table 1: Table of file names and their respective sizes

VII. RESULTS

Given the setup described in section VI, the program was
executed for each test .txt file five times using encryption
and decryption. Figure 7 and Figure 8 show the interface of
the program during execution for the different options that
are possible with the program. Figure 9 shows a sample of
encrypted text, and Figure 10 shows that text from Figure 9
decrypted back to its original form.

Figure 7: Program interface when encryption is selected
for parallel_for method



Figure 8: Program interface when decryption is selected for
parallel_for method

Figure 9: Sample of encrypted text

Figure10: The text form Figure 9 decrypted

Table 2 shows the timing results of the three different
implementations run with largely different file sizes. As

expected, the sequential implementation worked best with
smaller file sizes. Once the file sizes started getting above
~1MB, then the parallelization strategies started being
beneficial. The parallel_for method was the fastest after this
point, providing significant time improvement from the
sequential implementation. This supports the prior
knowledge of why the method was chosen to be
implemented, since parallel_for is optimal for improving the
timing of applications where there is a known data size and
each element needs the same, but independent,
computations performed upon it.

Strangely enough though, the pipeline method was never
faster than the sequential implementation. This could be due
to the fact that the computations for the Vigenère cipher are
not very complex, where there might be more room for the
pipeline to improve timing if the computations were more
complex. It is also possible that this pipelining method was
not very suitable to this application, and more improvements
could be made by modifying the pipelining process.

Figure 10: Timing results for different file sizes & methods

VIII. CONCLUSIONS

The program created using a cipher algorithm with different
types of execution methods was implemented successfully.
It has been shown that given the three methods utilized in
the program, the parallel_for implementation had the best
performance overall. However, the pipeline implementation
performed the worst across the board which supports the
idea that parallelizing performance depends on parameters
like dataset size, complexity of algorithm, etc. Therefore it
is not always the best method performance-wise.

It was also concluded that there is an importance of
understanding what types of parallel methods are best suited
for in different settings. More exploration could be done in
improving performance by expanding on the use of different
parallelization methods along with improving data security
with trying different ciphering algorithms.

REFERENCES

[1] https://en.m.wikipedia.org/wiki/File:ASCII-Table-wide.svg
[2] https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
[3] https://moodle.oakland.edu/pluginfile.php/8893205/mod_resource/co

ntent/1/Notes%20-%20Unit%204.pdf
[4] https://www.secs.oakland.edu/~llamocca/emb_intel.html
[5] https://www.geeksforgeeks.org/vigenere-cipher/

https://en.m.wikipedia.org/wiki/File:ASCII-Table-wide.svg
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://moodle.oakland.edu/pluginfile.php/8893205/mod_resource/content/1/Notes%20-%20Unit%204.pdf
https://moodle.oakland.edu/pluginfile.php/8893205/mod_resource/content/1/Notes%20-%20Unit%204.pdf
https://www.secs.oakland.edu/~llamocca/emb_intel.html
https://www.geeksforgeeks.org/vigenere-cipher/

