
Neural Network-Based MPC Control Law for
Active Cell Balancing

ECE 5772: High Performance Embedded Programming

Luke Nuculaj
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

lukenuculaj@oakland.edu

Michael Muller
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

mwmuller@oakland.edu

Abstract—In the context of battery pack balancing, active
cell balancing methods have been unanimously adopted by
both industry and literature alike for purposes of distributing
charge evenly across the pack and thereby prolonging an electric
vehicle’s (EV) range. Specifically, receding horizon methods – like
model predictive control (MPC) – are among the most popular
approaches for their ability to consider system constraints.
However, they suffer from requiring extensive computation at
each time step. Alternatively, this work sought to utilize deep
learning to learn the MPC control law and parallelize the forward
pass computation with Intel’s TBB library. This work considers
the case of 3, 5, 10, and 20 cells, and develops deep neural
networks (DNN) for each case. The training data consisted of
10,000 randomly-generated state-of-charge (SOC) vectors and
their corresponding balancing current vectors as produced by the
MPC algorithm – the 20-cell network required 30,000 data points
to converge to something usable. Upon deployment of the four
DNNs to the Intel Atom dual-core processor, it was found that
while parallel for and parallel pipeline parallelization techniques
reduced the computation time in comparison to the sequential
DNN implementation, the combination of the parallel for with
parallel reduce was the optimal choice in terms of timing: for
the 20-cell DNN, 7578.15 microseconds in comparison to the
13256.7 microseconds for the sequential approach, reducing the
computation time by ≈ 42.8%. As for balancing performance,
each of the networks successfully brought their respective bat-
tery packs to equilibrium, albeit slightly breaching the system
constraints in some instances. Specifically, the largest violation
of the Kirchhoff’s current law constraint appeared in the 20-cell
pack with the sum residing on the order of –0.1.

I. INTRODUCTION

With the rising popularity of electric vehicles in recent
years, their superiority to their gasoline-powered counterparts
in areas of reduced carbon emissions and cost efficiency have
rightfully catapulted EVs to the frontier of today’s cutting-
edge, infrastructural technology [1], [2]. At the heart of EVs
lay hundreds of battery cells – typically of the lithium-ion
variety [3]–[5]. Due to the inevitability of manufacturing
variations, battery cells exhibit SOC imbalances with one
another which – in turn – curtail both battery life and perfor-
mance, reducing an electric vehicle’s range [6]–[9]. To combat
this, non-dissipative cell balancing techniques are frequently
employed in conjunction with advanced control techniques –

MPC being among the most explored and appealing control
techniques by virtue of its ability to account for system
constraints [6], [10], [11]. While receding horizon methods of
control have shown much promise in balancing battery packs
under various physical constraints, they suffer not only from
their extensive computational demands, but also the frequency
with which these computations need be performed. In the
pursuit of designing a responsive controller, one which does
not quickly produce a set of balancing currents will inevitably
contribute to the gradual degradation of the battery pack.

To address the two-fold issue, we utilize deep learning to
learn the MPC control law for a given pack size – even the
forward propagation of a sufficiently sized DNN requires much
less computation than active-set or interior point methods that
are typically used in MPC, especially for larger prediction
horizons. However, the forward pass of a neural network is
not a trivial computation by any means, so we aim to employ
parallelization techniques learned in the course (see “Section
II Part B” for a detailed explanation regarding how neural
networks can be decomposed into smaller sub-tasks that can be
computed in parallel). Specifically, we aim to develop DNNs
for the case of 3, 5, 10, and 20 cells; the DNN for each
case will naturally grow as with more cells, there is a higher-
dimensional MPC control law to be learned by the network. As
will be explained further in later sections, the training data for
each neural network will be extracted directly from the MPC
algorithm as SOC vector inputs and balancing current outputs.
Lastly, Intel’s TBB library is employed in three diverse ways:
parallel for, parallel pipeline, and parallel for combined with
parallel reduce. The acceleration of the neural network com-
putation in each case is tabulated in Section IV and compared
to the sequential computation, and the performance of each of
the neural networks is evaluated for its ability to balance all
while abiding by system constraints.

II. METHODOLOGY

A. Mathematical Formulation of the Problem

To perform the pack balancing, the initial development of a
mathematical model for each cell is paramount. The following



equation is used

sik+1 = sik − ηiTs

3600Ci
ui
k, (1)

where superscript “i” denotes the ith cell in the pack, s is
the SOC, η ∈ [0, 1] is the Coulombic efficiency, C is the cell
capacity in Amp hours, Ts is the sampling period in seconds,
and ui

k is the ith cell’s balancing current at time step k. With
this formulation, the implication is that ui

k > 0 pulls charge
out of the cell, and ui

k < 0 moves charge into the cell. For
this work, homogeneous cells are assumed with values η = 1,
C = 4.1, and Ts = 1.

Because the cell-level dynamics represented in (1) are
decoupled between all cells, the state vector xk ∈ Rn×1 is
the column vector of each cell’s SOC (n being the number
of cells in the pack), and the control vector uk ∈ Rn×1 is a
column vector of each cell’s balancing current, and the sparse
system dynamics can be expressed as

xk+1 = Axk +Buk (2)

A =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

B =

−
1

3600·4.1 0 . . .
0 − 1

3600·4.1 . . .
...

...
. . .

 ,

where A,B ∈ Rn×n.
In addition to the mathematical formulation of the system

dynamics, careful attention must be paid in acknowledging
the physical constraints inherent to the problem. Besides
the systems dynamics constraint (2), each cell’s SOC must
fall within the continuous range of [0,1] (3), there must be
limitations placed on the current (4) to prevent damaging
the pack, and the sum of the balancing currents must equate
to zero (5) (Kirchhoff’s current law). For clarity, the system
constraints are expressed as

0 ≤ xk ≤ 1 (3)
−0.3 ≤ uk ≤ 0.3 (4)∑

ui
k = 0. (5)

With an MPC algorithm, the optimization problem

min
u0,...,uN−1

xT
NPxN +

N−1∑
i=0

(
xT
i Qxi + uT

i Rui

)
(6)

can be cast onto the battery balancing problem, where N is
the size of the prediction horizon, P is the block-diagonal
weighting matrix on the terminal state, Q is the block-diagonal
weighting matrix on the intermediate states, and R is the
block-diagonal weighting matrix on the control sequence.
The MPC algorithm here is subject to the system constraints
outlined in (2) (3), (4), and (5). For this particular case, the
diagonal elements of P and Q are set to 100, and the diagonal
elements of R are set to 0.01. This specific assignment of the
weights asserts a larger penalty on the system being away
from equilibrium, and less of a penalty on asserting harsher

balancing currents. And finally, the size of the prediction
horizon N = 15, translating to how many time steps into
the future the MPC algorithm looks into the future to produce
its control move.

Computationally, this is an incredibly expensive algorithm,
and as mentioned earlier, needs to be computed at each time
step for ideal system control. The approach outlined here seeks
to use deep neural networks to instead learn the MPC control
law. Additionally, deep neural networks are easily paralleliz-
able structures, and the techniques learned in class can be
readily applied to further expedite the computation (discussed
in Section C). DNNs provide the convenience of having a
network to learn the MPC algorithm. Then we can leverage
the redundant computation of the network architecture with
parallel computing techniques.

B. Training and Parallelizing the Deep Neural Networks

Each of our DNNs was trained with outputs from the MPC
algorithm for a given pack size 3, 5, 10, and 20 (see Section
C for the tabulated sizes of each of the networks used in
this work). With our initial training set we recognized the
accuracy of our networks was poor for SOCs not used for
training. This was expected since our networks learned the
MPC algorithm for only a single initial SOC. Alternatively,
we generated 10,000 random SOC vectors, used the MPC
algorithm to fetch the associated 10,000 control vectors, and
this approach covered a wider span of possible SOCs, leading
to better all-around balancing performance. While this method
worked for our lower sized packs, our larger packs were
still having accuracy issues. For our 20-cell pack, the neural
network was initially trained on 30,000 data points, and once
the performance converged to a local minimum, the training set
was reduced to 20,000, and the process was repeated iteratively
until the training set consisted of 1,000 data points. This
method of training the 20-cell network seemed to work the best
in terms of converging to a state of acceptable performance.

Once the training data acquisition process had been com-
pleted and the neural networks performed well in terms of
MSE, a Python script was written to extract our network
weights and biases and format them into header files to be
readily used in our CPP implementation.

Neural networks are often dubbed “embarrassingly parallel”
as there is little to no effort required in separating the forward
pass calculation into smaller sub-tasks which can be performed
in parallel. To understand why, consider the formula for
computing the output of a neuron k

zjk = σ

(
bjk +

nj−1∑
i=1

wk
i z

j−1
i

)
(7)

where zjk is the output at the jth layer and the kth neuron, bjk
is the bias at the jth layer and the kth neuron, wk

i is the weight
that connects the ith neuron in the previous layer to the kth

neuron in the current layer, and σ is the activation function
of choice. For this particular case, we opted for the ReLU
activation function in the hidden layers, and a purely linear



Fig. 1. Sequential flow for layer computation.

activation for the output layer for purposes of computational
lightness. Consider the sequential implementation of each of
the neurons’ outputs shown in Fig. 1.

For a given layer j, the computation of the kth neuron’s
output is completely independent of the other neurons in the
same layer. Because of their computational independence, (7)
for each neuron in a layer can be computed in parallel. Specif-
ically, we utilize three methods sourced from Intel’s TBB
library to accomplish the parallelization: parallel for, paral-
lel pipeline, and parallel for combined with parallel reduce.
The visualization of the parallel for (Fig. 2) separates the out-
put calculations into sub-ranges, and it’s over these sub-ranges
that the scheduler assigns a designated worker to perform the
sub-range of the output computations. The parallel pipeline
approach takes this concept further and constructs a software
pipeline over a given layer, where each of the tasks queued into
the pipeline are the output computations for the current layer
(Fig. 3). The pipeline contained three stages: serial in order,
parallel, and finally serial in order. The first stage passes in
each layer to the pipeline, the second performs the node dot
products in parallel and finally the third stage assigns the
output to our current layer’s output array.

While the aforementioned parallelization methods may
seem to be the furthest that we can break up the layer
computation, the dot product for each output neuron itself
is an associative operation. With this fact, the addition itself
need not be sequential, but can instead be reduced with
the introduction of the parallel reduce function. Specifically,
the third and final parallelization technique uses parallel for
to map the output neuron computations, and parallel reduce
inside of the tasks to perform the accumulation (Fig. 4).

III. EXPERIMENTAL SETUP

As mentioned earlier, a Python script was developed to
extract the weights and biases from the trained neural networks

Fig. 2. parallel for layer computation.

Fig. 3. parallel pipeline layer computation.

in MATLAB for the 3, 5, 10, and 20-cell cases. These extracted
weights and biases were formatted into usable CPP arrays
that were stored in header files and included in the main
file upon execution. Initially, a WSL environment was used
to run each of the neural networks’ CPP implementations in a
Linux environment. Once the outputs were cross-validated and
confirmed to be matching with the identical neural networks
in MATLAB, the CPP code was exported to the board where
successful operation of each of the neural networks was
confirmed. Here, each neural net would stream its SOC and
balancing current data to a text file, which was recovered and

Fig. 4. parallel for and parallel reduce layer computation.



TABLE I
NEURAL NETWORK PARAMETERS

Pack Size (Cells) 3 5 10 20
Num. Layers 6 6 6 7

3 Cell Size 3-48-48-48-48-3
5 Cell Size 5-64-64-64-64-5
10 Cell Size 10-96-128-128-96-10
20 Cell Size 20-256-256-256-256-256-20

TABLE II
TIMING RESULTS (µS)

Cell Num. 3 5 10 20
sequential 547.35 645.7 2107.05 13256.7

for 580.4 661.7 1638.5 8424.35
pipeline 791.65 1125.95 2374.5 9758.45

for + reduce 518.95 737.25 1596.95 7578.15

exported back to MATLAB for further analysis. For the sake
of clarity, information about the networks implemented in CPP
are listed in Table I.

IV. RESULTS

Timing results for the four CPP implementations (sequen-
tial, parallel for, parallel pipeline, and parallel for + paral-
lel reduce) were run on the Intel Atom and obtained over an
average of 20 runs. These timing results are tabulated in Table
II and are plotted in Fig. 5. While for the smaller network sizes
of 3 to 5 cells the sequential approach seemed like it had the
generally faster execution, it wasn’t until the DNNs for 10
and 20 cells that the gap between the sequential and parallel
approaches began to widen. This separation in execution times
is especially apparent in the 20-cell DNN, where the sequential
exhibits an average execution time of 13256.7 µs, while
the parallel for + reduce was the fastest implementation of
them all with an average execution of 7578.15 µs. Provided
that the Intel Atom is a dual-core processor, the near-50%
reduction in computation time tracks logically. Furthermore,
while the parallel for and parallel pipeline methods did save
on time for the larger network sizes, we conclude that the
parallel for + reduce won out because it is implemented with
both the isolated output neuron computation and the reductive
accumulation of the dot product in mind. Given this, the for +
reduce was undoubtedly the most appropriate parallelization
technique for an operation of this variety.

While the timing results are clear, they are virtually mean-
ingless without usable results. Therefore, we hone in on the
balancing performance of the CPP-implemented DNNs. For
the sake of brevity, we will only be considering the cases of
5 and 10 cells, but it should be noted that the cases of 3
and 20 cells yielded similar performance. As seen in Fig. 6,
7, and 8, the 5-cell network performs well in balancing the
battery pack, abiding by the current constraints as well as the
Kirchhoff current law constraint, with the sum for the latter
residing in the vicinity of 10−3.

Furthermore, the 10-cell network showcases similar quality
in terms of performance (Fig. 9, 10, and 11). That being said,

Fig. 5. Plot of timing results (µs).

Fig. 6. 5-cell balancing SOCs.

it does slightly breach the current constraints as the balancing
currents enter the vicinity of ±0.4. Nonetheless, the sum of
the balancing currents resides on the order of 10−2, which
is still acceptable performance and could likely be corrected
with more extensive training.

V. CONCLUSION

Overall, parallelization was expected to improve our per-
formance, and it most certainly did upon consideration of the
results. With the number of nested loops of computation, it
was expected to see great improvements over the sequential
implementation as the size of the network increased. Our
problem directly benefits from a large network size as well,
specifically from wider layers as the parallel execution occurs
over the layers. As the pack size increases, we need to add
layers and increase the number of nodes to achieve reliable
results compared to the MPC approach. With a significant



Fig. 7. 5-cell balancing currents.

Fig. 8. 5-cell current sum.

improvement for a relative pack size of 2, we can assume
this only gets better as we process larger pack sizes, e.t
100 or even 1000. Our parallelization techniques provide a
necessary improvement to efficiently balance at high pack
sizes. Parallel reduce + parallel for was surprising as the best
overall method, and upon further analysis, was the most appro-
priate parallel technique for performing several dot products
in parallel. It would be interesting to see if this continues as
the pack size increases, or if we converge on the parallel for
technique being the more efficient method.

REFERENCES

[1] P. Ahmadi, “Environmental impacts and behavioral drivers of deep
decarbonization for transportation through electric vehicles,” Journal of
Cleaner Production, 2019.

Fig. 9. 10-cell balancing SOCs.

Fig. 10. 10-cell balancing currents.

Fig. 11. 10-cell current sum.



[2] H. Hao, X. Cheng, Z. Liu, , and F. Zhao, “Electric vehicles for
greenhouse gas reduction in china: A cost-effectiveness analysis,” Trans-
portation Research Part D, 2017.

[3] X. Chen, W. Shen, T. Vo, Z. Cao, and A. Kapoor, “An overview of
lithium-ion batteries for electric vehicles,” IEEE, pp. 230–235, 2012.

[4] H. Askari, A. Khajepour, M. B. Khamesee, and Z. L. Wang, “Embedded
self-powered sensing systems for smart vehicles and intelligent trans-
portation,” Nano Energy, vol. 66, p. 104103, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2211285519308109

[5] M. Dendaluce Jahnke, F. Cosco, R. Novickis, J. Pérez Rastelli, and
V. Gomez-Garay, “Efficient neural network implementations on parallel
embedded platforms applied to real-time torque-vectoring optimization
using predictions for multi-motor electric vehicles,” Electronics,
vol. 8, no. 2, 2019. [Online]. Available: https://www.mdpi.com/2079-
9292/8/2/250

[6] J. Chen, A. Behal, and C. Li, “Active battery cell balancing by real time
model predictive control for extending electric vehicle driving range,”
IEEE Transactions on Automation Science and Engineering, accepted
June 2023.

[7] M. Einhorn, W. Roessler, and J. Fleig, “Improved performance of serially
connected li-ion batteries with active cell balancing in electric vehicles,”
IEEE Transactions on Vehicular Technology, vol. 60, no. 6, pp. 2448–
2457, 2011.

[8] J. Huang, D. Shi, and T. Chen, “Event-triggered state estimation with
an energy harvesting sensor,” IEEE Transactions on Automatic Control,
vol. 62, no. 9, pp. 4768–4775, 2017.

[9] J. Chiasson and B. Vairamohan, “Estimating the state of charge of a
battery,” IEEE Transactions on Control Systems Technology, vol. 13,
no. 3, pp. 465–470, April 2005.

[10] A. Pozzi, M. Zambelli, A. Ferrara, and D. M. Raimondo, “Balancing-
aware charging strategy for series-connected lithium-ion cells: A nonlin-
ear model predictive control approach,” IEEE Transactions on Control
Systems Technology, vol. 28, no. 5, pp. 1862–1877, 2020.

[11] F. S. Hoekstra, L. W. Ribelles, H. J. Bergveld, and M. Donkers,
“Real-time range maximisation of electric vehicles through active cell
balancing using model-predictive control,” in 2020 American Control
Conference, Denver, CO, July 1–3, 2020, pp. 2219–2224.


