
Matrix Inversion Algorithms Using Intel TBB
Cholesky and LU decomposition

Ruger Stellberger
Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: rstellberger@oakland.edu

Abstract— This project plans to use the Intel TBB library of
threaded applications to simplify and streamline the
calculations of a couple of types of matrix inversion algorithms.
The two types will be the Cholesky and LU decompositions.
The project will use one or more of the following TBB features
that are parallel for, reduce, and pipeline. To confirm that the
inversion of an input matrix was correct, a MATLAB script
was used to confirm it.

I. INTRODUCTION
Matrix inversion is fundamental in various scientific and

engineering applications, from signal processing to
optimization problems. As the scale and complexity of
matrices increase, efficient algorithms become crucial for
timely and accurate computations. This project embarks on
leveraging the Intel Threading Building Blocks (TBB)
library to enhance the performance of matrix inversion
algorithms, specifically focusing on Cholesky and LU
decompositions.

The primary objective of this project is to simplify and
streamline the calculations involved in matrix inversion by
utilizing parallel computing features provided by the Intel
TBB library. The report will dive into the implementation
of TBB's ‘parallel_for’ functionalities to optimize Cholesky
and LU decomposition algorithms. These algorithms are
chosen for their significance in numerical linear algebra
and their wide-ranging applications in physics, statistics,
and machine learning.

The motivation behind this project stems from the
escalating size of matrices encountered in real-world
applications. Traditional sequential algorithms for matrix
inversion can be computationally intensive, especially when
dealing with large datasets. By incorporating parallel
computing through TBB, the project aims to significantly
reduce computation times and improve overall efficiency.

II. METHODOLOGY

Intel TBB Parallelization Process
The parallelization of the inversion algorithms is the

bread and butter of this project. Intel’s TBB suite of
functions used in C Plus Plus(CPP) programs provides an
excellent way for programmers to create efficient and strong
programs that make use of multithreading. TBB has many
kinds of different parallelization functions that can be suited
to many different kinds of tasks such as looping, pipelining,
and reducing sequential tasks. TBB allows such tasks to be

done more efficiently therefore reducing the time required to
complete them by a significant margin. This project uses the
TBB function ‘parallel_for’, this function allows for an
iterative approach to multithreading. For this project
‘parallel_for’ was chosen because of the iterative nature of
the algorithm. Matrix inversion typically revolves around
mathematical calculations carried out on each cell of a
matrix. In every case, the input matrix will need to be
mapped and traversed completely to calculate every value of
the output matrix. If these mathematical calculations can be
parallelized while the matrix is traversed, major gains in
computation time can be achieved.

Each inversion algorithm sees its function with a
‘parallel_for’ statement and the corresponding inversion
calculations. The syntax of ‘parallel_for’ involves
specifying a range of loop iterations and providing a lambda
function representing the loop body. The use of the
‘parallel_for’ function is as follows. For dividing the range,
the ’parallel_for’ function divides the specified range
[begin, end) into chunks, called blocked ranges. Each

blocked range is assigned to a different thread for parallel
execution. In the lambda function execution, each thread
executes the provided lambda function independently on its
assigned blocked range. The synchronization lets TBB take
care of the necessary synchronization mechanisms to ensure
correct and safe parallel execution. The library manages
thread creation, workload distribution, and synchronization,
allowing developers to focus on the algorithm's logic. In the
case of this project, the blocked range for the Cholesky
decomposition represents the parallelization of the rows of
the matrix being decomposed. from the first row, row 0, to
the nth row depending on the size of the matrix. The LU
decomposition works similarly in that the matrix is split up
and parallelized although this time the blocked range starts
at row 0 but then uses a function called min(rows, cols)
instead of the variable n for the last row. This function takes
the number of rows and columns and finds which is less
than the other and then parallelizes based on whichever of
the two parameters is lower for example a 4 by 3 matrix has
4 rows and 3 columns so TBB will parallelize the 3 columns



instead of the 4 rows. Inside the parallelized loop, the
Cholesky and LU decomposition steps are applied to
different portions of the matrix concurrently. The Cholesky
algorithm only requires the rows because the decomposition
of a Cholesky matrix can only be done with square matrices,
meaning the rows and columns will always be equal in their
amount. During lambda function execution, individual
threads independently execute the provided lambda function
on their respective assigned blocked ranges. The
synchronization aspect is seamlessly managed by TBB,
ensuring correct and safe parallel execution.

III. EXPERIMENTAL SETUP

MATLAB Verification
The verification of matrix inversion plays a crucial role

in ensuring the accuracy and reliability of the implemented
algorithms. MATLAB serves as a powerful tool for this
purpose, providing a platform to compare the results
obtained from the parallelized Cholesky and LU
decomposition algorithms with a reference.

1. Implementation of Matrix Inversion:

● Utilize MATLAB's ‘inv’ function to
compute the inverse of the input matrix.

2. Generation of Input Matrices:

● Create various square matrices of different
sizes suitable for Cholesky and LU
decomposition.

3. Verification Procedure:

● Compute the matrix inverse using the
parallelized Cholesky and LU
decomposition algorithms in C++.

● Use MATLAB to compute the inverse of
the same input matrix.

● Compare the results for accuracy.
4. MATLAB Code

MATLAB verification code is provided:
function MatrixInversionAlgotithms()
% Example matrices for Choledky and LU
A = [93, 90, 74; 22, 82, 17; 17, 61, 50];
B = [93, 90, 22; 90, 74, 82; 22, 82, 17];

% LU Decomposition
[L, U] = lu_decomposition(A);
disp('LU Decomposition - L:');
disp(L);
disp('LU Decomposition - U:');
disp(U);

% Cholesky Decomposition
L_cholesky = cholesky_decomposition(B);
disp('Cholesky Decomposition:');
disp(L_cholesky);

end

% LU Decomposition
function [L, U] = lu_decomposition(A)
n = size(A, 1);
L = eye(n);
U = A;

for k = 1:n-1
for i = k+1:n
L(i, k) = U(i, k) / U(k, k);
U(i, k:n) = U(i, k:n) - L(i, k) * U(k,

k:n);
end

end
end

% Cholesky Decomposition
function L = cholesky_decomposition(B)
n = size(B, 1);
L = zeros(n, n);

for i = 1:n
for j = 1:i
if i == j

L(i, j) = sqrt(B(i, j) - sum(L(i,
1:j-1).^2));

if L(j, j) == 0
error('Cholesky decomposition

failed. Matrix is not positive definite.');
end

else
L(i, j) = (B(i, j) - sum(L(i, 1:j-1) .*

L(j, 1:j-1))) / L(j, j);
end

end
end

end

A test run of the program was ran with a 3x3 matrix with
a randomly generated matrix from the CPP program. These
matrices were then input into the MATLAB script to be run
to confirm that the CPP program was working correctly.

IV. RESULTS

The application of Intel TBB in parallelizing
matrix inversion algorithms yields compelling results in
terms of computational efficiency. In this section, we
present a comprehensive analysis of the performance
improvements achieved through parallelization, comparing
execution times and scalability metrics between the
sequential and parallel implementations. Our investigation
focuses on the Cholesky and LU decomposition algorithms,
demonstrating the impact of multithreading on the inversion
process. For the data representation of the results, a negative
value in the difference represents a longer time to compute
for TBB whereas a positive is a lower time to compute.

First, we’ll look at the computation time results for
the Cholesky decomposition based on Figure 1, showcasing
the time to sequentially compute the decomposition, as well
as the comparison with TBB in terms of their difference in



computation time. The table tests a few different sizes of
matrices to show a significant difference in the resulting
times. There is also a graph, Figure 2, that shows a visual
representation of the computation time gains we see while
using TBB to parallelize the algorithm.

Figure 1

Figure 2

Looking at Figures 1 and 2, we can see that in small sizes of
matrices, TBB has an inverse effect of what we intended to
show. There isn't much need for parallelization for small
data sets due to how simple they tend to be. Up until the
200x200 matrix we do not see any type of performance gain
while using TBB. I would like to point out though that as we
increase the matrix sizes we can notice that while TBB does
not see performance uplift in the beginning, TBB does get
closer and closer to matching the sequential algorithms
performance. at 200x200 while there is still a TBB net loss,
the computation times are nearly identical. Looking at the
500x500 matrix, there is a definite change in outcome for
TBB. There is a very significant performance uplift and this
translates even more to the matrices that are even bigger
than that. Looking solely at Figure 2 it can be seen that TBB
nearly cuts computation time in half when the matrices
become larger and larger. The results from the Cholesky
algorithm show that there is a definite advantage to
parallelizing our algorithm when compared to a sequential
approach.

Secondly, we’ll look at the results of the LU
decomposition algorithm. Below are another 3 figures,
Figures 3, 4, and 5, where figures 4 and 5 are set up very
similar to that of figures 1 and 2 although with the
computation times from running the LU algorithm.

Figure 3

Figure 4

Figure 5

Here, looking at figure 3 we have a large table of
matrix sizes that were tested from a 5x5 matrix to a 500x500
and everything in between. For LU decomposition there is
no specific requirement for the matrix to be square, although
it is typically used in that fashion which we will talk about
in Figure 5, I did this to show a broader spectrum of
potential TBB improvement scenarios. Figure 3 however,
shows a similar story to Figure 1 and the Cholesky
decomposition. At small matrix sizes, we don't see any kind
of gain by using TBB. We do not see any TBB gain until
around a matrix size of 50x100 which is significantly
smaller than the 200x200 for the Cholesky. This may be due
to the simpler mathematical calculations that are used in the
LU decomposition. As we move to matrices higher than
50x100 they all show an improvement in comutation time
for TBB, with the 500x500 showing a difference close to
0.75 seconds. Again I have included a visual representation
of of these results with a graph seen in Figure 4. The graph
clearly shows how TBB makes a large difference in
computation times as we keep increasing the matrix size.
Moving over to Figure 5 where the table is set up the same
as Figure 1 to show the results using just square matrices we
can see the raw change in computation times for the
sequential and TBB. Again there is a tightening of the



difference in times between the two computation types as
we move from a lower-sized matrix to a higher one.
Although I did not test with matrices as large as 750x750 for
the LU results, an examination of the graph suggests that
TBB could approach cutting computation times in half.

CONCLUSIONS

Key Take-Away Points:
1. Significant Performance Gains: The results of

applying TBB to the Cholesky decomposition
showcased a notable performance uplift,
particularly for larger matrix sizes. Although TBB
did not exhibit substantial gains for smaller
matrices, it nearly halved computation times for
matrices of 500x500 and beyond.

2. Algorithm-Specific Behavior: The LU
decomposition, with its different mathematical
calculations, demonstrated a distinct behavior
compared to Cholesky. TBB gains were observed
for matrices larger than 50x100, emphasizing the
impact of algorithm intricacies on parallelization
benefits.

3. Verification through MATLAB: The use of
MATLAB for result verification ensured the
accuracy of the parallelized algorithms. This step is
crucial in real-world applications where precision
is paramount.

Further Work:
4. Exploration of Larger Matrices: While the project

demonstrated TBB's effectiveness for matrices up
to 500x500, further exploration with even larger
matrices, such as 750x750, could provide insights
into the scalability of the parallelization approach.

5. Algorithm-Specific Optimization: Tailoring TBB
parallelization techniques to the specific
characteristics of Cholesky and LU decomposition
algorithms could lead to further improvements.
Fine-tuning parameters and exploring additional
TBB functionalities could enhance performance.

6. Generalization to Other Algorithms: Extending the
application of TBB to other matrix-related
algorithms could broaden the impact of
parallelization. Investigating its effectiveness for
different types of linear algebra operations is an
avenue for future exploration.

Remaining Issues:
7. Performance Thresholds: Identifying the threshold

at which TBB becomes advantageous for specific
matrix sizes and algorithms is a nuanced challenge.
Determining optimal conditions for parallelization
remains an area for refinement.

Algorithm Complexity:
8. The complexity of matrix inversion algorithms

influences TBB's effectiveness. A deeper
understanding of how algorithm intricacies impact
parallelization benefits could guide future
optimizations.

In conclusion, this project successfully
demonstrated the efficiency gains achievable through TBB
parallelization for Cholesky and LU matrix inversion
algorithms. The results highlight the algorithm-specific
nature of TBB benefits and the importance of accurate
verification. As we look to the future, there is room for
further exploration into larger matrices, algorithm-specific
optimizations, and the application of parallelization
techniques to a broader spectrum of linear algebra
operations. Overall, this project contributes to the ongoing
pursuit of enhancing computational efficiency in numerical
linear algebra.

REFERENCES

[1] “L U decomposition of a system of linear equations,” GeeksforGeeks,
https://www.geeksforgeeks.org/l-u-decomposition-system-linear-equa
tions/ (accessed Dec. 16, 2023).

[2] “Cholesky decomposition : Matrix decomposition,” GeeksforGeeks,
https://www.geeksforgeeks.org/cholesky-decomposition-matrix-deco
mposition/ (accessed Dec. 16, 2023).

[3] By, “Getting started with Intel® threading building blocks (Intel®
TBB),” Intel,
https://www.intel.com/content/www/us/en/developer/articles/guide/ge
t-started-with-tbb.html (accessed Dec. 16, 2023).

[4] “Intel® oneapi threading building blocks,” Intel® oneAPI Threading
Building Blocks,
https://www.intel.com/content/www/us/en/developer/tools/oneapi/one
tbb.html#gs.1p3ze8 (accessed Dec. 16, 2023).

[5] M. Voss, Pro Tbb. Apress, 2019.

[6] [1] D. LLamocca, “Reconfigurable Computer Research Laboratory,”
High-performance embedded programming with the Intel Atom
Platform, https://www.secs.oakland.edu/~llamocca/emb_intel.html
(accessed Dec. 16, 2023).


