
Mandelbrot Set Generator
ECE 5900

Michael Bowers
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI
e-mail: mkbowers@oakland.edu

Abstract—The Mandelbrot Set is a set of complex numbers
that do not diverge to infinity when run through the recursive
function Zn+1 = Zn

2 + c for a specified number of iterations.
Threading Building Blocks (TBB) and Streaming SIMD
Extensions (SSE) both greatly improved set generation
performance compared to the original sequential
implementation , with a combination of both strategies yielding
the greatest performance gains.

I INTRODUCTION

This project will cover various implementations of a
Mandelbrot set generator using different optimization
strategies. A sequential implementation serves as a baseline
metric to assess the performance of other optimized
implementations, including a multi-threaded implementation
using Threading Building Blocks (TBB), a vectored
approach using Streaming SIMD Extensions (SSE), and an
implementation utilizing both TBB and SSE.

The Mandelbrot Set is a set of complex numbers c,
where the function Zn+1 = Zn

2 + c performed over an n
number of iterations does not diverge to infinity when Z is
initialized to 0. [1] The boundary of the Mandelbrot set is
comprised of points that vary in the number of iterations
required before escaping the set. This boundary region
contains detailed fractals structures at increased
magnifications. For image generation, pixels are usually
colored according to the number of iterations required to
cross the specified threshold in the recursive sequence.

Figure 1: Mandelbrot Set, Keith Shuert (1991)

II METHODOLOGY

II.A Image Scaling and Usage
The Mandelbrot Generator requests the following

arguments: Xc and Yc which specify the center coordinates,
a radius that specifies our view window, and a maximum
number of iterations. The width and height of the image are
hard-coded into the main function at a 1:1 aspect ratio. The
radius and image dimensions are used to create X and Y
scaling factors which are then used to re-scale the X and Y
data arrays around the desired center coordinates. A “mode”
argument was also used to select between generating all
variants, or just the fastest variant (SSE+TBB only).

II.B Sequential Implementation
The basic recursive “escape-time” algorithm can be

defined using the following pseudo-code:

This pseudo-code utilizes two real numbers in place of
the original complex-number point representation (one real,
one imaginary component) by taking the squared modulus
of the complex representation [1]. A point is considered
within the set if the squared modulus stays under a threshold
of 4 for a maximum specified iteration count. A point
escapes the set when the threshold is surpassed (or when a
point value reaches beyond a circle with a radius of 2).

The escape-time algorithm forms the basis of the
sequential Mandelbrot implementation. For each point, the
escape-time algorithm is performed, and the final iteration
result associated with a particular point is saved in a 1D
raster array. The X and Y data arrays are looped through
for-loops to gather and calculate an iteration value for each
data point.

II.C Parallel (TBB) Implementation
Threading Building Blocks (TBB) offers parallel_for

which divides a traditionally serial loop into independent
iterations that are executed in parallel. [2] For the parallel
Mandelbrot, each for-loop is replaced with a parallel_for in
a complex-lambda expression format. In this case, each data
row is parallelized, and each point within each row is
parallelized. Since TBB does not guarantee safety from data
race conditions, a function is used to encapsulate each point
calculation, and as every function call grabs a distinct
iteration index, each task handles a unique point.

II.D Vectored (SSE) Implementation
Streaming SIMD Extensions (SSE) are

single-instruction, multiple data instruction set extensions
available for most modern processors that allow for the
execution of the same operation on multiple data objects, or
vectored data.

The Intel Atom N2600 [3] on the Terasic DE2i-150
Board features eight 128-bit registers (XMM) per core, and
support for Intel® SSE2, Intel® SSE3, and Intel® SSSE3.
The original SSE instructions are also supported. The
required header file containing the intrinsics (emmintrin.h)
was available via the GCC install on the Terasic board.

This brief guide [4] was used to as an example for
proper usage of some SSE intrinsics, the emmintrin.h
header, and demonstrates a sample compilation using GCC.
This reference [5] contains a complete list and
documentation for each SSE intrinsic.

The original escape-time algorithm was used to model
the vectored Mandelbrot implementation. As each data row
is still processed sequentially, four different X data points
are packed into a vector of data type “__m128,” (4x32
floats) and a corresponding y-data vector is loaded with the
same Y data point associated with the current row. It is
imperative that the size of each data row is divisible by four,
since the X data pointer is incremented by four for every
SSE vector load.

Since it is possible for points on the same vector to
result in different final iteration counts, each iteration
calculation must finish (the largest count must finish) before
a new vector can be loaded and processed. Any iteration
count that finishes early will still be processed as a vector
component, but will remain unchanged. After the four
points are completed, the vector is unpacked and stored on a
1D raster array.

II.E Parallel + Vectored (TBB+SSE) Implementation
TBB was also implemented in concert with SSE.

parallel_for in compact lambda expression format was used
to parallelize each row, and the iteration calculations for
each point (points operated on in groups of four) was
handled sequentially by an SSE function.

II.F Coloring Algorithm
A simple coloring algorithm for the Mandelbrot set

consists of saturating points to one color when the
maximum number of iterations was reached, and saturating
all other points to a different color. This will highlight the
boundaries of the set. Intricate fractal patterns can be better
revealed by using a coloring algorithm that assigns a color
to a particular iteration count.

A .ppm file was generated from the 1D raster result
array, which contains the iteration results for each point. The
generation of .ppm files was modeled after a python
implementation [6] which uses 24-bit words (split into 3
bytes for RGB information) to color each point. The
coloring algorithm utilizes arithmetic, bit manipulation and
shifting of the original iteration count to assign values for
red, green and blue.

III EXPERIMENTAL SETUP

Development was done primarily on a desktop PC
installed with Kubuntu and Kate, with final debugging and
result gathering done on the Terasic DE2i-150 Board. C++
files were compiled using the GNU Compiler Collection
(GCC, using g++ as a compiler driver). A Makefile was
used when compiling the Mandelbrot file.

All four Mandelbrot variants were calculated and
generated in series, and each had timestamps to record
separate run-times. A standard image viewer was used to
view the Mandelbrot results. For run-time comparisons, the
standard Mandelbrot view (with mode = 0, Xc = 0.0, Yc =
0.0, R = 2.0, and MaxIter = 256) was used, and a boundary
region was used as well (with mode = 0, Xc = -0.75, Yc =
0.25, R = 0.06, and MaxIter = 512).

It was expected that TBB would provide a boost in
performance (lower run-time), as each point is calculated
independently. SSE should improve run times by up to a
factor of four since four points would be simultaneously
processed. When combining TBB and SSE, it was expected
that the performance increase would be a combination of the
performance gains of each individual strategy, since each
thread should be able to utilize the XMM registers, and thus
be able to perform SSE instructions in parallel.

IV RESULTS

Each optimization strategy at all image sizes tested
demonstrated greater performances than their counterpart
sequential runs.

IV.A Mandelbrot Run Results at (0, 0, 2, 256)
The run-time results (in ms) for a generations at

(0,0,2,256) is shown below:

Sequential TBB SSE TBB+SSE

1024x1024 1033.54 425.61 185.53 70.82

800x800 620.44 257.63 109.76 42.52

600x600 356.09 150.37 62.35 24.36

480x480 226.92 99.46 41.55 16.37

320x320 102.17 49.47 18.19 7.14

A graphical representation for generation run times at (0, 0,
2, 256) is shown below:

Figure 2: Run times for “Home View”

The relative performance gains for generations at (0, 0, 2,
256) are shown below:

Sequential TBB SSE TBB+SSE

1024x1024 - 2.428 5.571 14.593

800x800 - 2.408 5.653 14.592

600x600 - 2.368 5.711 14.618

480x480 - 2.281 5.461 13.862

320x320 - 2.065 5.620 14.310

IV.B Mandelbrot Run Results at (-0.75, 0.25, 0.06, 512)
Mandelbrot generations in a zoomed-in boundary

region were also tested, and were performed with higher
maximum iteration values. Run-time results (in ms) are
shown below:

Sequential TBB SSE TBB+SSE

1024x1024 3791.68 1563.40 733.79 257.23

800x800 2313.76 950.49 423.88 157.37

600x600 1299.89 513.80 246.98 89.87

480x480 833.19 324.14 154.26 57.36

320x320 373.01 148.78 69.14 27.07

A graphical representation for generation run times at
(-0.75, 0.25, 0.06, 512) is shown below:

Figure 3: Run times for “Seahorse” View

The relative performance gains for generations at (-0.75,
0.25, 0.06, 512) are shown below:

Sequential TBB SSE TBB+SSE

1024x1024 - 2.425 5.167 14.741

800x800 - 2.434 5.459 14.703

600x600 - 2.530 5.263 14.464

480x480 - 2.570 5.401 14.526

320x320 - 2.507 5.395 13.789

IV.C Interpretation
TBB consistently improved run-times in all cases.

For the (0, 0, 2, 256) runs, the effectiveness of TBB
decreased slightly as the image size decreased, but this is
expected, as the share of time spent from thread-switching
increases. This trend was not seen with the (-0.75, 0.25,
0.06, 512) run, perhaps since the calculation time for each
point is longer due to the larger specified maximum iteration
value.

For all runs, SSE only improved run-times by
factors greater than 5, Since each vector processes four
points at a time, but only completes when the point with the
largest iteration value completes, the expected increase was
under 4 times. The observed results may be due to the SSE
code exhibiting better instruction pipe-lining than the
original sequential run, or the SSE instructions may simply
complete in fewer clock cycles than their single-data
counterparts.

The TBB+SSE run performed the best out of all
four run variants, which demonstrates that each thread can
simultaneously access the SSE architecture located in its
respective core. Additionally, for all run scenarios
TBB+SSE performed slightly better than the separate
performance gains of TBB and SSE multiplied together.

IV.D Verification
Verification of results of all four Mandelbrot

variants was done primarily by performing checksums on
the output .ppm images. Mandelbrot images were generated
at region (0.318, 0.5, 0.005, 4096) with a grayscale palette
for easier visual checking of the images. Checksums using
the md5sum tool showed successful identical checksum
results for each Mandelbrot generation.

However, it was discovered by accident that if X2 +
Y2 is changed to X*Y (originally a mistake in the
escape-time algorithm that produced a different pattern
radiating away from the Mandelbrot set), there are slight
visual differences between the SSE generation and non-SSE
generation.

IV.E Sample Generations

Figure 4: “Home”, Main Mandelbrot
(x = 0, y = 0, r = 2 , I = 512)

Figure 5: “Seahorse Valley” (x = -0.75, y = 0.25, r = 0.06 , I =256)

Figure 6: (x = -1.2535, y = -0.0467, r = 0.001, I = 1024)

CONCLUSIONS

For applications where the same calculations are
performed on a large number of data, both TBB and SIMD
instructions appear very suitable, and a combination the two
appears especially worthwhile for certain applications.
Further work could potentially be done on improving the
checking process for points on vectors in the SSE
implementation. Newer releases of SSE may contain more
useful instructions, including those that allow for easier
compares at specific positions on the vector.

Another point potentially worth investigating is why
non-SSE and SSE generations differ when using X*Y for
threshold checking instead of X2 + Y2. This was considered
an out-of-scope modification to the original Mandelbrot
equation and thus was not followed up on. But these results
may have implications on the use of SSE. If unexpected
results occur from certain calculations with SSE, more
caution may be needed to ensure validity of calculated
results and if SSE instructions are being used correctly.

Some ease-of-use features and aesthetic changes could
potentially be added to enhance user experience. One
notable critique is that this Mandelbrot generator is
somewhat difficult to navigate. Additionally, the coordinate
system is not intuitive; increasing in the negative Y
direction moves the Mandelbrot view up. However, this is
how a few other Mandelbrot programs set their coordinate
system, including the open-source Fraqtive [7]. An aesthetic
feature that could be added is a color-smoothing algorithm,
which is a feature of many higher end Mandelbrot
generators.

REFERENCES

1 A. Cheritat, Mandelbrot Set, Institut de Mathématiques de
Toulouse. 30 Oct 2016 [Online] Available:
https://www.math.univ-toulouse.fr/~cheritat/wiki-draw/index.php/Ma
ndelbrot_set

2 D. Llamocca, Unit 4 – Multi-Core applications, 2021
3 Intel, Intel Atom® Processor N2600, [Online] Available:

https://ark.intel.com/content/www/us/en/ark/products/58916/intel-ato
m-processor-n2600-1m-cache-1-6-ghz.html

4 C. Woods, SSE Intrinsics, [Online] Available:
https://chryswoods.com/vector_c++/emmintrin.html

5 Intel, Intel® Intrinsics Guide, 6 Dec 2021 [Online] Available:
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index
.html

6 Solarian Programmer, PPM image from scratch in Python 3. [Online]
Available:
https://solarianprogrammer.com/2017/10/25/ppm-image-python-3/

7 Fraqtive, [Online] Available: https://fraqtive.mimec.org/

https://www.math.univ-toulouse.fr/~cheritat/wiki-draw/index.php/Mandelbrot_set
https://www.math.univ-toulouse.fr/~cheritat/wiki-draw/index.php/Mandelbrot_set
https://chryswoods.com/vector_c++/emmintrin.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://solarianprogrammer.com/2017/10/25/ppm-image-python-3/

APPENDIX

“Octopus” (x = -0.811531, y = 0.201429, r = 0.001, I = 256)

Swirls (x = -0.7568098, y = -0.0668795, r = 0.001, I = 256)

Hidden Mandelbrot(x = 0.30018, y= 0.4618, 0.0001, I = 2048)

Viral Particles (x = -745428, y = -0.0467, r = 0.001, 1024)

“Elephant Valley ” (x= 0.2969, y = 0.020, r = 0.015 , I = 1024)

(x = 0.318, y = 0.5, r = 0.005, I = 4096)

