A* Algorithm Parallel Implementation

ABED ALJARRAH

ALA'ALDIN HIJAZ

Introduction

- A star is a search algorithm that search through a space of possibilities for an optimal solution out of all possible solutions.
- A star is typically applied to a path finding type of search problems.
- Starting from a specific node of a graph, the algorithm aims to find a path to a given end node with the smallest cost.
- The algorithm extend one path at a time, and to determine which path to extend it uses a cost function.

•
$$f(n) = g(n) + h(n)$$

Example

f(n) = g(n) + h(n)

The cost function f(n) is formatted by adding the cost from the start node to the current node (g(n)) and an estimation of the cheapest cost path from the current node to the end node (h(n)). h(n) is called the heuristic function.

Proposed Parallel Approaches

 We have tried several solutions, all of them showed better sequential approach compared with the parallel approach.

- Current Approach: parallelize the highlighted circle on the right. Parallel for used.
- Had to use Mutex to make sure same memory resources are not used at the same time

Demo

Result – Same Random Seed was used

nxn	TBB (Sec)	Sequential (Sec)
1000	0.206	0.171
2000	1.002	0.954
3000	2.548	2.573
3500	3.618	3.698
4000	4.800	4.813
4200	5.157	5.347
4400	5.643	5.852

Result – Same Random Seed was used

nxm	TBB (Sec)	Sequential (Sec)	nxm	TBB (Sec)	Sequential (Sec)
100 x 100	0.005	0.001	1200 x 100	0.862	0.969
200 x 100	0.026	0.015	1300 x 100	13.440	21.667
300 x 100	0.059	0.045	1400 x 100	2.280	3.094
400 x 100	0.107	0.075	1500 x 100	6.965	10.523
500 x 100	0.220	0.188	1600 x 100	7.072	10.308
600 x 100	0.248	0.236	1700 x 100	1.857	2.375
700 x 100	1.639	2.145	1800 x 100	5.298	7.343
800 x 100	0.321	0.302	2100 x 100	3.079	4.058
900 x 100	1.475	1.816	2300 x 100	8.433	11.324
1000 x 100	0.677	0.743	2500 x 100	11.183	15.073
1100 x 100	1.630	2.057	2700 x 100	152.816	235.984

Result (ATOM) – Same Random Seed was used

Result (XPS) – Same Random Seed was used

