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A star is a search algorithm that search through a space of 

possibilities for an optimal solution out of all possible solutions. 

A star is typically applied to a path finding type of search 

problems. 

In this paper we will implement the A star algorithm using 

sequential approach and parallel approach. We will examine 

different parallel approaches on the algorithm. 

A time comparison between the different the sequential and 

parallel approaches were done, as a conclusion was that based 

on the grid size and dimensions one approach may be better 

than another approach. 

Based on that conclusion, we recommend using a hybrid 

approach where switching between the sequential and parallel 

approach based on the grid parameters. 

I. INTRODUCTION 

A* is a search algorithm that search through a space of 
possibilities for an optimal solution out of all possible 
solutions. It is typically applied to a path finding type of 
search problems. Starting from a specific node of a graph, 
the algorithm aims to find a path to a given end node with 
the smallest cost. The algorithm does that by maintaining a 
tree of paths originating at the start node and extending those 
paths one node at a time until it reaches the end node [1]. 

The algorithm extends one path at a time, and to 
determine which path to extend it uses a cost function.  

 
f(n) = g(n) + h(n) 
 

The cost function f(n) is formatted by adding the cost 
from the start node to the current node (g(n)) and an 
estimation of the cheapest cost path from the current node to 
the end node (h(n)). h(n) is called the heuristic function. 

 
The heuristic function depends on the problem itself, one 

key point when selecting the heuristic function is to not 
overestimate the cost to get to the end node. In this paper we 
will use the Manhattan distance [2] as our heuristic function. 

 
In these days, many microcontrollers are multicores, and 

to cope with the advancement in technologies and algorithms 
many industries are switching to multicore embedded 
systems. To really be able to get benefits of these powerful 

microcontrollers you would need to make sure that your 
algorithms can run on a parallel system which may be a 
challenge for many different algorithms. The A* search 
algorithm is widely used for many different applications [3]-
[6]. Therefore, in this paper, we are focusing on how to 
implement a parallel A* search algorithm. 

 
In this paper, we will implement the A* algorithm using 

a sequential approach first, then we will implement different 
parallel approaches and examine the improvement on 
performance on different graph size. We will be using TBB.  

 
In the ECE5900 class we have learnt how to parallelize a 

sequential algorithm and how to examine when it’s going to 
shine. We had to learn how to use the OpenGL library [7] to 
be able do the graphical view. Also, this was our first time 
using the A* algorithm. 

II. METHODOLOGY 

A. Serial Algorithm 

First, we created a Sequential approach of the Algorithm, 
which was our starting point. The Serial approach use this 
idea of open and closed sets. The open set contain possible 
nodes that are still candidates and not checked yet. The 
closed set contain nodes that we have already examined. 
Every loop, we examine a new node from the open set, this 
node shall have the lowest f(n), we look to it’s neighbors and 
update their g(n), h(n) and f(n) and add them to the open set. 
The next loop, one of these neighbors will be our next 
candidate node. 
Pseudocode: 
function reconstruct_path(cameFrom, current) 

    total_path := {current} 

    while current in cameFrom.Keys: 

        current := cameFrom[current] 

        total_path.prepend(current) 

    return total_path 

 

// A* finds a path from start to goal. 

// h is the heuristic function. h(n) estimates the cost to reach goal from node 

n. 

function A_Star(start, goal, h) 

    // The set of discovered nodes that may need to be (re-)expanded. 

    // Initially, only the start node is known. 

    // This is usually implemented as a min-heap or priority queue rather than a 

hash-set. 

    openSet := {start} 

 

    // For node n, cameFrom[n] is the node immediately preceding it on the 

cheapest path from start 

    // to n currently known. 

    cameFrom := an empty map 

 

    // For node n, gScore[n] is the cost of the cheapest path from start to n 

currently known. 

    gScore := map with default value of Infinity 

    gScore[start] := 0 

 



    // For node n, fScore[n] := gScore[n] + h(n). fScore[n] represents our 

current best guess as to 

    // how short a path from start to finish can be if it goes through n. 

    fScore := map with default value of Infinity 

    fScore[start] := h(start) 

 

    while openSet is not empty 

        // This operation can occur in O(1) time if openSet is a min-heap or a 

priority queue 

        current := the node in openSet having the lowest fScore[] value 

        if current = goal 

            return reconstruct_path(cameFrom, current) 

 

        openSet.Remove(current) 

        for each neighbor of current 

            // d(current,neighbor) is the weight of the edge from current to 

neighbor 

            // tentative_gScore is the distance from start to the neighbor 

through current 

            tentative_gScore := gScore[current] + d(current, neighbor) 

            if tentative_gScore < gScore[neighbor] 

                // This path to neighbor is better than any previous one. Record 

it! 

                cameFrom[neighbor] := current 

                gScore[neighbor] := tentative_gScore 

                fScore[neighbor] := gScore[neighbor] + h(neighbor) 

                if neighbor not in openSet 

                    openSet.add(neighbor) 

 

    // Open set is empty but goal was never reached 

    return failure 

 
Figure1, shows the A* algorithm in action, the orange 

circile is the starting point, the purple is the target, the green 
is a node in the open set, the red is a ndoe in the closed set 
and the black is a wall that we can’t go through.  

 
Figure 1: A* 

B. Parallel approach 

We have tried many different approaches for 
parallelization, however, at the end, a simple parallel for lop 
showed to be the most efficient and it showed a promising 
result compared with the sequential approach. 
Pseudocode: 
function reconstruct_path(cameFrom, current) 

    total_path := {current} 

    while current in cameFrom.Keys: 

        current := cameFrom[current] 

        total_path.prepend(current) 

    return total_path 

 

// A* finds a path from start to goal. 

// h is the heuristic function. h(n) estimates the cost to reach goal from node 

n. 

function A_Star(start, goal, h) 

    // The set of discovered nodes that may need to be (re-)expanded. 

    // Initially, only the start node is known. 

    // This is usually implemented as a min-heap or priority queue rather than a 

hash-set. 

    openSet := {start} 

 

    // For node n, cameFrom[n] is the node immediately preceding it on the 

cheapest path from start 

    // to n currently known. 

    cameFrom := an empty map 

 

    // For node n, gScore[n] is the cost of the cheapest path from start to n 

currently known. 

    gScore := map with default value of Infinity 

    gScore[start] := 0 

 

    // For node n, fScore[n] := gScore[n] + h(n). fScore[n] represents our 

current best guess as to 

    // how short a path from start to finish can be if it goes through n. 

    fScore := map with default value of Infinity 

    fScore[start] := h(start) 

 

    while openSet is not empty 

        // This operation can occur in O(1) time if openSet is a min-heap or a 

priority queue 

        current := the node in openSet having the lowest fScore[] value 

        if current = goal 

            return reconstruct_path(cameFrom, current) 

 

        openSet.Remove(current) 

        for each neighbor of current 

            // d(current,neighbor) is the weight of the edge from current to 

neighbor 

            // tentative_gScore is the distance from start to the neighbor 

through current 

            tentative_gScore := gScore[current] + d(current, neighbor) 

            if tentative_gScore < gScore[neighbor] 

                // This path to neighbor is better than any previous one. Record 

it! 

                cameFrom[neighbor] := current 

                gScore[neighbor] := tentative_gScore 

                fScore[neighbor] := gScore[neighbor] + h(neighbor) 

                if neighbor not in openSet 

                    openSet.add(neighbor) 

 

    // Open set is empty but goal was never reached 

    return failure 

 
As can be noticed from the pseudo code, we have used 

the same code we used for the sequential approach, but we 
added a parallel for loop (Grayed out area), and to make sure 
we don’t access the same memory at the same time, we 
added a mutex (Red Area). This approach resulted in the 
most efficient parallel approach. In the next sections we will 
be discussing the experimental setup and covering the 
results. 

III. EXPERIMENTAL SETUP 

As an experiment we have collected data using the Atom 
board, it has two cores, it was provided by the class. The 
other setup was a Dell XPS 15 9570 (Intel(R) Core(TM) i7-
8750H CPU @ 2.20GHz   2.21 GHz), it had 6 cores and 12 
logical processors and a 32Gbytes of RAM. 

On the Atom we had Ubuntu 12, on the Dell we had 
Ubuntu 20. 

We expect the speed up on the Dell to be much higher 
compared with the Atom board. Also, we expect that the 
parallel approach will shine once we start examining large 
grids. 

IV. RESULTS 

We run both approaches (the sequential and parallel) on 
both setups, captured result for different grids sizes. The 
sequential approach showed better performance when the 
grid size was smaller, on the other hand, the parallel 
approach showed improved performance when the grid 
became bigger and bigger.  

During test and data collection, we found that using a 
rectangular shape grid showed an improved performance 
compared with using a square grid. The main reason of that 
is the fact that with a rectangular shape, we get to examine 
more data (wider path). 



A. Atom board 

The Atom board has two cores, it operates with a 
600Mhz speed, Table 1 shows the result that we collected 
when running the algorithm with different grid sizes. 

Table 1: Atom board result 

nxm TBB (Sec) Sequential (Sec) 

100   x 100 0.005 0.001 

200   x 100 0.026 0.015 

300   x 100 0.059 0.045 

400   x 100 0.107 0.075 

500   x 100 0.220 0.188 

600   x 100 0.248 0.236 

700   x 100 1.639 2.145 

800   x 100 0.321 0.302 

900   x 100 1.475 1.816 

1000 x 100 0.677 0.743 

1100 x 100 1.630 2.057 

1200 x 100 0.862 0.969 

1300 x 100 13.440 21.667 

1400 x 100 2.280 3.094 

1500 x 100 6.965 10.523 

1600 x 100 7.072 10.308 

1700 x 100 1.857 2.375 

1800 x 100 5.298 7.343 

2100 x 100 3.079 4.058 

2300 x 100 8.433 11.324 

2500 x 100 11.183 15.073 

2700 x 100 152.816 235.984 

Computing the speed up, shows that we achieved a max 
of 1.6 which does makes sense, looking the to the speed up 
in Figure 2 shows that the speed up is fluctuating a little bit, 
the reason behind that is the randomness of the added walls. 

 
Figure 2: Atom SpeedUp 

B. Dell XPS 

We run the same experiments on the Dell XPS, and the 
results are shown in Table 2. 

nxm TBB (Sec) Sequential (Sec) 

300   x 300 0.0022 0.0007 

600   x 300 0.0019 0.0012 

900   x 300 0.048 0.0368 

1200 x 300 0.185 0.178 

1500 x 300 0.077 0.055 

1800 x 300 0.269 0.252 

2100 x 300 0.298 0.275 

2400 x 300 1.377 1.728 

2700 x 300 5.565 8.973 

3000 x 300 2.141 2.750 

3300 x 300 2.618 3.730 

3600 x 300 2.513 3.195 

3900 x 300 42.143 82.920 

4200 x 300 12.839 20.831 

4500 x 300 3.219 3.903 

4800 x 300 29.040 49.776 

5100 x 300 2.849 2.890 

5400 x 300 6.182 8.429 

5700 x 300 7.238 9.606 

6000 x 300 10.455 13.155 

6300 x 300 37.323 60.292 

6600 x 300 108.858 202.161 

Computing the speed up, shows that we achieved a max 
of 2 which is small knowing that we are running on 6 cores 
computer, we believe that the bigger the data set the more the 
speed up will improve. We also had a mutex inside the 
parallel part, so this will certainly limit our speed up. 

 

 
Figure 3: XPS SpeedUp 

CONCLUSIONS 

The A-Star algorithm is an implementation of a depth-
first search algorithm. It can be applied to numerous path-
finding algorithms and has a wide range of implementation 
variants. 

Implementing the algorithm with a parallel approach 
allows for better execution times than serial implementation 
when inputting a large set of data. The maximum speedup on 
the XPS processor was ~2, while on the Atom processor it 
was ~1.6. The higher speedup by the XPS processor is 
mainly because the processor has more cores than the Atom 
processor. However, our parallel implementation was not the 
most optimized solution, further investigation in 
parallelizable portions of the algorithm can result in higher 
speedup rates. 

Future work includes investigating more ways of parallel 
execution optimization and finding more parallelizable areas 
of the algorithm which can result in even higher speedup 
rates. 
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