
Convolutional
Neural Network

December 9, 2020

Matthew Horvath and Ryan
Marten

ECE 4900 Final Project

Project Description

Motivation for Project

● We have worked on simple FCN in hardware
before (VHDL)

● Plenty of simple FCN prototypes online for aid
● Wanted to add convolutional layers to further

improve digit recognition
● Convolutions offer a great opportunity to

implement multithreading and parallelization of
software to improve efficiency

● CNNs are the approach of choice for addressing
complex image recognition tasks.

● TBB vs Sequential time comparison benefits

Specifications

● MNIST handwritten database used for training/testing
○ 60,000 training samples
○ 10,000 testing samples
○ 28x28 image

● 784 inputs -> 10 outputs (0-9)
● CNN: 2 Layers

○ Conv1: 6@24x24, Pool1 6@12x12
○ Conv2: 24@8x8, Pool 2 24@4x4
○ Uses 5x5 kernel for each convolution

● FCN: 3 Layers (Input, 1 Hidden, Output)
○ Input layer: 384 neurons
○ Hidden Layer: 128 neurons
○ Output: 10 neurons (Represents 0-9 digit options)

Overview of Implementation
(Sequential vs Parallelization)

Sequential

● Straightforward approach with layers
of convolution, activation, and pooling
with the result being fed into a FCN.

Parallelization

● Implements parallel_for for each set of convolutions
○ 1 for the C1 x 6

■ Additional parallel_for implemented on each epoch for
training

○ 1 for the C2 x 24

Training Sequential vs TBB

Sequential TBB

https://youtu.be/L1DCfD82Y0I https://youtu.be/yYyX8eImCl8

https://youtu.be/L1DCfD82Y0I
https://youtu.be/yYyX8eImCl8

Testing Sequential vs TBB

Sequential TBB

https://youtu.be/i2h7w4CZJuw https://youtu.be/QnPNsxg0nwM

https://youtu.be/i2h7w4CZJuw
https://youtu.be/QnPNsxg0nwM

Results

TBB

● Trained 100 Images at 512 Epochs
○ CNN Time: ~ 0.98 s/epoch
○ Total Time: ~ 1.80 s/epoch
○ Total Time: ~ 9.24 s/image

● Testing 1000 Images
○ CNN Time: ~2.80 s
○ Total Time: ~2.97 s

Sequential

● Trained 100 Images at 512 Epochs
○ CNN Time: ~ 2.86 s/epoch
○ Total Time: ~ 3.42 s/epoch
○ Total Time: ~ 17.53 s/image

● Testing 1000 Images
○ CNN Time: ~ 3.12 s
○ Total Time: ~ 3.306 s

Notes
The CNN time improvement seen on the training
is not the same for the testing. Why?

When training only only 1 epoch, the CNN
improvement falls off to almost zero.

Conclusion

Improvements

● Parallel_pipeline and parallel_reduce for both the testing and training of the data
○ Optimize Parallel_for loops
○ Deeper embedding of parallelization

● Add in back propagation for kernel values
○ Currently trains only the weight values for the FCN
○ Randomized kernel values were used for the training, then brought over for

use in the testing
● An increase in accuracy through longer training iterations

○ Trained single batch of 15k
○ Increase average training size from 500

