
1

Convolutional Nerual Network with Intel® Threading Building Blocks

ECE4900

List of Authors: Matthew Horvath, Ryan Marten

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: mhorvath@oakland.edu, rmarten@oakland.edu

I. INTRODUCTION

Convolutional neural networks (CNN) are currently

used worldwide in a varying spectrum of application areas.

Each of these applications share a common objective of

being able to learn features from their massive data bases

and generalize outputs based upon occurrences not learned

within the training phase. Utilizing data from the MNIST

handwritten database, this project will assimilate this

database in order to fully implement, through training and

testing, a convolutional neural network for addressing

these handwritten digits. This application will be able to

complete two separate tasks of training and testing, which

will sufficiently output results that will be able to

demonstrate the capabilities of a CNN. Upon the

completion of such a design, the final output will be able

to tell the user if the program guessed the correct digit or

not. With this output, it will be able to address various error

issues, as well as let the user know other important statistics

about the network overall (sample size, training time, etc.)

These statistics will be able to help in the comparison

between sequential implementation and TBB. Motivation

for this project stemmed from the fact that both students

have previous experience with neural networks and wanted

to implement a convolutional layer, along with

parallelization, to further their knowledge on neural

networks overall. Convolutions within a neural network

remain the approach of choice for addressing complex

image recognition tasks, and in combination with TBB, this

approach theoretically will be able to sufficiently provide

clear results with time reduction and increased accuracy.

This approach also aided in further expanding research into

CNN’s by each student to better understand the

fundamentals of such a project. Furthermore, this provides

applicable details and knowledge into how convolutional

neural networks, whether parallelized or sequential, are

appropriate for real world applications.

II. METHODOLOGY

A. Architecture

This implementation will consider two separate

sections of training and testing. This will utilize the MNIST

database with an image size of 28x28. Both of these

sections are used in tandem in order to achieve a successful

convolutional neural network. The network consists of two

sides, the first being the convolutional and pooling side,

with the second being the fully connected side. The

convolutional side will create a feature map of our image

which will better help the fully connected side classify the

image.

The convolutional side of the network features

two layers. The first layer acts as the input of the entire

system, while the second layer will act as the input into the

fully connected layers. This first layer of the convolution

network will perform 6 separate “narrow convolutions”

across the original input image using a 5x5 kernel. This

operation of a “narrow convolution” means that only the

places on the original image where the entire 5x5 kernel

can fit will be where the convolutions will occur. This

results in each of the output images from this operation to

be only 24x24 (down from 28x28). These six convoluted

images are called feature maps, as the convolution process

in each image ideally will have extracted key “features”

from the original image, with each of the six having a

different

feature.

Figure 1. CNN Architecture

 Next, these six feature maps are now fed into a pooling

layer. For this implementation, we use 2x2 pooling

checking for the max in each 2x2 area. Performing this

process will cut these feature maps down to 12x12 size.

The idea behind performing these pooling operations is to

cut down on the unnecessary information that will

eventually be fed into the fully connected network. By

looking at each 2x2 “block” on the 24x24 feature map, we

can see which of those four values is the greatest and map

it to the pooled image. Doing this over the entire feature

mailto:mhorvath@oakland.edu
mailto:rmarten@oakland.edu

2

map effectively shrinks the original feature map by a factor

of two in each direction.

 The output of the first layer (convolution and pooling) is

now fed into the second layer. Here, similar operations are

performed as were in the previous layer. We will take each

of the now six pooled 12x12 images, and we will convolve

them with another 5x5 kernel. This time however, we will

add them up and output that sum to a single feature map.

The final value that is sent to the feature map is sent

through a sigmoid function before being stored. Like

before, “narrow convolutions” are performed, which will

shrink the 12x12 pooled image down to a 8x8 image. When

adding each of these convolutions up, we perform a simple

sigmoid operation on each value, effectively limiting the

maximum value of each to be between 0 -1. This process

of convolving each of the pooled 12x12 images, adding

them up, and storing them in a 8x8 image is performed 24

times, resulting in our second set of feature maps. These 24

feature maps, each 8x8 in size, are now ready to be pooled.

The same process as the first pooling is performed here, as

we will use 2x2 pooling looking for the maximum value in

each of the 2x2 blocks on the 8x8 feature maps. This will

result in 24 4x4 pooled images which will be the final

output of the convolution side of the network.

 Now that all the convolution and pooling operations

have been completed, we now need to feed the 24 pooled

images into the fully connected layer. With how this code

is set up, we need to flatten the pooled images. Each of

these pooled images are stored as 2-D arrays, while our

fully connected layers operate on 1-D arrays. A simple

formula to map a 2-D array to a 1-D array is used in order

to compute the final input for the fully connected layer.

 The fully connected side of the network features three

layers: the input layer, a hidden layer, and an output layer.

The input layer consists of 384 separate neurons that will

each take in one of the values in the now flattened final

output from the convolution side. Each of these neurons

will perform a mathematical function on the input, that will

consist of multiplying the input with a given weight, before

passing it on to the next layer.

Figure 2.

 (a). Fully Connected Layer Example.

(b). Connection from previous layer to single neuron.

 (c). Accumulation and Activation of Neuron Output

The hidden layer, or the middle layer, of the

network, consist of only 128 neurons. Each of these

neurons is connected to the previous layers neurons, and

each of these connections are represented by a weighted

value. These hidden layer neurons will take in the input

from each and every previous layer output, multiplied by

that given weight, and accumulated. Once these values are

calculated, the output of each of these neurons will be sent

through an activation function, which will help keep the

values within a given range. For the purpose of this

network, we use the sigmoid (same as the one used in the

convolutions).

 For the final output layer, the same process that was

performed from the first layer to the second layer is done,

this time for the middle layer to the output layer. This final

output layer has only 10 outputs, each corresponding to the

digit 0-9. As mentioned before, the sigmoid operation is

performed on the output of each layer. The benefit of this

is that the value will always be between 0-1, meaning that

when looking at the final outputs, each of the 10 values will

be in this range. The highest value in these outputs should

correspond to what the handwritten digit is.

B. Training

The general architecture as explained above makes up

the core of the training model used in the application. The

one difference for when we train the system is the addition

of the back-propagation process. This training process is

shown below in Figure 3. The general idea is that when an

image is inputted into the network, we can compare what

the calculated output is compared to the actual input. By

doing this, we can go back though the network and change

the weight values accordingly to make sure it correctly

predicts an image. Each iteration, these weights will

change more and more, and after a subsequent number of

training runs, the final set of weights can be used in the

testing application.

For the backpropagation, very simple gradient descent

is implemented. With this particular system, no biases are

used, so the accuracy will only ever reach so high. Because

of the lack of biases however, it makes the backpropagation

much simpler to implement. The first step is to calculate

the error of the 10 output neurons. Once these are found,

we can then find the error of the neurons in the hidden

layer, with respect to the output layer. These errors that are

found act as a link in a chain; any error from the first layer

to the second layer, affects the third layer. This is why the

training will always start with checking the error of the

output layer, then working backwards. With these errors

now calculated, we can now perform a multiplication

operation on the outputs of both the second layer neurons

and the first layer neurons. The goal of the operation is to

find new weights that will better estimate the correct value

of the image. With the addition of some global variables

that are set at the compile time, the final equation for

updating each weight value is shown below.

3

Delta = (Learning Rate *Hidden Layer Error * Hidden-

Layer Neuron) + (Momentum * Delta)

This “Delta” value is the change in the weight

value from epoch to epoch. Ideally, with each iteration the

delta will get smaller and smaller, based off of the error

values getting smaller and smaller. The momentum and

learning rate values are chosen by us and can be changed

to try and produce a more accurate outcome, or possibly

train the system quicker.

This process of training is what takes the most

amount of time when it comes to CNN. Each input training

image is sent through the system anywhere from 500-1000

times, each time updating all of the weights, before we train

the next image. In total, we need to train roughly 40,000-

60,000 images in order to calculate a good set of weights

to be used in the testing application. Because of these

amounts of training runs needed, the benefit of the TBB

libraries will be most apparent when using it on the training

application.

Figure 3. Training Flow Diagram

C. Testing

After completion of the training portion of the design,

the testing of the CNN can now commence. This testing

section considers the outputted weight model file from the

training portion for use within this section. This will also

consider testing images from the MNIST dataset for the

CNN testing phase to approximate its answer for what

image is outputting. Finally, this also takes into account the

same kernel as the previous training section utilized. All of

these files will set the parameters for the testing section and

feed the data into the input layer. This layer will then go

into the hidden layers that will consider the various

functions that will need to be able to calculate the final

output. This calculated output will then compare to the

actual digit that it read and be able to tell the user what it

thinks that digit is. This output to the user will then give a

yes or a no, as well as and both the result and the digit value

it compared to. By the chance it is incorrect, this will go to

an error counter that will give a percentage error to the user

upon completion of the execution. All of these statistics

will again compare to the TBB implementation against the

sequential. The overall timing of each subsequent section

of the design should be much more rapid than the training

counterpart, with the theoretical timing of each being

roughly the same. Figure 4 devolves the flow diagram for

this section of the implementation.

Figure 4. Testing Flow Diagram

III. EXPERIMENTAL SETUP

In order to develop the results needed for the overall

project, a variety of testing methods were utilized through

the use of a virtual machine with the Linux Ubuntu kernel

installed and the KDE advanced text editor software, Kate.

This allowed for each student to have efficient testing,

4

without the use of transferring data between personal

computers and the board. This also increased efficiency

when debugging the program as a whole. Finalizing the

design, the provided Terasic DE2i-150-FPGA

Development Kit was employed in order to test the

performance of the project upon an Intel Atom® N2600.

The use of the board provided the project to be correctly

compiled, sequentially and through TBB, allowing for

various tests to demonstrate the project.

Specifically, the sequential tests revolved around the

timing of the training segment (10 images, 1,000 images,

15,000 images, etc.), and then taking the outputted model

weight file into the testing phase. This testing phase would

then appropriately take in this model file for use when

running through the various images for guessing. This will

then output a time taken, as a guess for each of the images

it will run through.

The testing of the TBB parallel portion of the CNN goes

about this training and testing in the exact same manner, in

order to achieve a clear comparison between its sequential

counterparts. This TBB will train its separate model

weights file, which will then go into the testing file, both

of which will also output a time taken to train and test.

Theoretically, the training section for the sequential and

TBB should take a substantially long time, with the TBB

being theoretically much faster; this faster gain being the

goal of the project as a whole. The testing portion of both

networks should follow in a different manner, as the testing

should run rapidly for each network, with the benefits of

TBB being possibly non-existent. However, the theoretical

benefits of parallelizing the training portion would still be

able to demonstrate the advantages of TBB. Following the

outputs of each system, the full comparison between the

two systems is able to be completed.

IV. RESULTS

Starting with the training of the sequential, along with

the TBB, the results demonstrated the drastic time

improvements that come from the benefit of having the

design parallelized through TBB. Figure 5 and 6 show

these time comparisons between the two systems.

Figure 5. Sequential Training Timing

Figure 6. TBB Training Timing

Based on these results, it is clear that there is an

approximate 45% decrease in the amount of time it takes

for the program to run through the TBB training process.

This gain was most apparent through the CNN, where the

parallel_for loops were located, as the FCN and back

propagation times were closely related to each other. These

results were estimated theoretically to be around this

significant and proves the design of our project did

successfully implement the TBB functions. All of these

results stem from the use of 512 epochs, which mean that

each image is trained separately 512 times, whereas if we

did a single epoch, the CNN improvement falls off to

almost zero.

Moving forward, taking the model weights file

generated from the training, each separately trained model

file was implemented into the testing for TBB and

sequential, respectively. Theoretically, the benefit should

not be that significant, as the time to test each image is so

small that the benefits of parallelization begins to fall off.

However, based on Figures 7 and 8, the testing did allow

for a slight improvement on the testing time.

F

Figure 7. Sequential Testing Timing

Figure 8. TBB Testing Timing

From Figure 7 and 8, the major time improvements gain

result from the convolutional 2, as this gain results in the

biggest time decrease between the two systems. Taking

into consideration the low accuracy, these do show the

same accuracy between the two systems. This is important

to note as both systems are then functioning properly and

allows for the timing comparisons to be justified.

V. CONCLUSIONS

Following the results from the project, various points in

regard to the project design and overall process is able to

be discerned. Working with the convolutional side of a

neural network and the parallelization through TBB was

both a learning process and a good experience for both

students, as this was a new concept they had not worked

5

with previously. This included various challenges, and

research into how convolutional neural networks worked

in order to try to correctly implement one, as well as

continue working with the TBB knowledge learned within

the class. Following the results, it is no question that the

accuracy left much to be desired, however noticing that

both the sequential and TBB ended up with the same

accuracy proves that both systems worked correctly to each

other. Furthermore, it is plainly seen that training had a

great decrease in time through the use of parallel_for loops

within the convolutional side of the TBB training. This

decrease in time is largely beneficial, as it can take up to

~32 hours of training sequentially, and with the TBB, this

time decreases to ~16 hours. More implementations of

parallel_pipeline, as well as parallel_reduce would have

seen large time decreases as well, however issues

implementing these processes left them out of the final

design. These improvements could be very noticeable if

implemented, and a further design would surely add these

into the final code. Finally, the issue of accuracy is a major

impediment with the current design, and further improving

this accuracy would be very beneficial to the final product.

Conclusively, the knowledge gained on this project overall

from the TBB multithreading to working with the

convolutions within a neural network were very beneficial

and is something both students hope to continue working

on in the future.

VI. BIBLIOGRAPHY

[1] C. Cdeotte, “MNIST - CNN coded in C - [0.995],” Kaggle, 21-Aug-

2018. [Online]. Available: https://www.kaggle.com/cdeotte/mnist-
cnn-coded-in-c-0-995.

[2] D. C. Ciresan, U. Meier, L. M. Gambardella and J.
Schmidhuber, "Convolutional Neural Network
Committees for Handwritten Character
Classification," 2011 International Conference on
Document Analysis and Recognition, Beijing, 2011,
pp. 1135-1139, doi: 10.1109/ICDAR.2011.229.I. S.
Jacobs and C. P. Bean, “Fine particles, thin films and
exchange anisotropy,” in Magnetism, vol. III, G. T.
Rado and H. Suhl, Eds. New York: Academic, 1963,
pp. 271–350.

[3] M. Y. W. Teow, "Understanding convolutional neural
networks using a minimal model for handwritten digit
recognition," 2017 IEEE 2nd International
Conference on Automatic Control and Intelligent.

[4] Systems (I2CACIS), Kota Kinabalu, 2017, pp. 167-
172, doi: 10.1109/I2CACIS.2017.8239052.

[5] A. Escontrela, "Convolutional Neural Networks from the ground
up," Medium, 17-Jun-2018. [Online]. Avaliable:
https://towardsdatascience.com/convolutional-nerual-networks-
from-the-ground-up-c67bb4145el.

[6] J. Brownlee, “How Do Convolutional Layers Work in
Deep Learning Neural Networks?,” Machine
Learning Mastery, 16-Apr-2020. [Online]. Available:
https://machinelearningmastery.com/convolutional-
layers-for-deep-learning-neural-networks/.

[7] HyTruongSon. “HyTruongSon/Neural-Network-
MNIST-CPP.” GitHub, 11 Oct. 2015,

github.com/HyTruongSon/Neural-Network-MNIST-
CPP.

[8] Mazur, Matt. “A Step by Step Backpropagation
Example.” Matt Mazur, 21 Aug. 2020,
mattmazur.com/2015/03/17/a-step-by-step-
backpropagation-example/.

https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-networks/
https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-networks/

