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I. INTRODUCTION 

Convolutional neural networks (CNN) are currently 

used worldwide in a varying spectrum of application areas. 

Each of these applications share a common objective of 

being able to learn features from their massive data bases 

and generalize outputs based upon occurrences not learned 

within the training phase. Utilizing data from the MNIST 

handwritten database, this project will assimilate this 

database in order to fully implement, through training and 

testing, a convolutional neural network for addressing 

these handwritten digits. This application will be able to 

complete two separate tasks of training and testing, which 

will sufficiently output results that will be able to 

demonstrate the capabilities of a CNN. Upon the 

completion of such a design, the final output will be able 

to tell the user if the program guessed the correct digit or 

not. With this output, it will be able to address various error 

issues, as well as let the user know other important statistics 

about the network overall (sample size, training time, etc.) 

These statistics will be able to help in the comparison 

between sequential implementation and TBB. Motivation 

for this project stemmed from the fact that both students 

have previous experience with neural networks and wanted 

to implement a convolutional layer, along with 

parallelization, to further their knowledge on neural 

networks overall. Convolutions within a neural network 

remain the approach of choice for addressing complex 

image recognition tasks, and in combination with TBB, this 

approach theoretically will be able to sufficiently provide 

clear results with time reduction and increased accuracy. 

This approach also aided in further expanding research into 

CNN’s by each student to better understand the 

fundamentals of such a project. Furthermore, this provides 

applicable details and knowledge into how convolutional 

neural networks, whether parallelized or sequential, are 

appropriate for real world applications.  

II. METHODOLOGY 

A. Architecture 

This implementation will consider two separate 

sections of training and testing. This will utilize the MNIST 

database with an image size of 28x28. Both of these 

sections are used in tandem in order to achieve a successful 

convolutional neural network. The network consists of two 

sides, the first being the convolutional and pooling side, 

with the second being the fully connected side. The 

convolutional side will create a feature map of our image 

which will better help the fully connected side classify the 

image. 

The convolutional side of the network features 

two layers. The first layer acts as the input of the entire 

system, while the second layer will act as the input into the 

fully connected layers. This first layer of the convolution 

network will perform 6 separate “narrow convolutions” 

across the original input image using a 5x5 kernel. This 

operation of a “narrow convolution” means that only the 

places on the original image where the entire 5x5 kernel 

can fit will be where the convolutions will occur. This 

results in each of the output images from this operation to 

be only 24x24 (down from 28x28). These six convoluted 

images are called feature maps, as the convolution process 

in each image ideally will have extracted key “features” 

from the original image, with each of the six having a 

different 

feature. 

 
Figure 1. CNN Architecture 

 

    Next, these six feature maps are now fed into a pooling 

layer. For this implementation, we use 2x2 pooling 

checking for the max in each 2x2 area. Performing this 

process will cut these feature maps down to 12x12 size. 

The idea behind performing these pooling operations is to 

cut down on the unnecessary information that will 

eventually be fed into the fully connected network. By 

looking at each 2x2 “block” on the 24x24 feature map, we 

can see which of those four values is the greatest and map 

it to the pooled image. Doing this over the entire feature 

mailto:mhorvath@oakland.edu
mailto:rmarten@oakland.edu


2 

 

map effectively shrinks the original feature map by a factor 

of two in each direction.  

    The output of the first layer (convolution and pooling) is 

now fed into the second layer. Here, similar operations are 

performed as were in the previous layer. We will take each 

of the now six pooled 12x12 images, and we will convolve 

them with another 5x5 kernel. This time however, we will 

add them up and output that sum to a single feature map. 

The final value that is sent to the feature map is sent 

through a sigmoid function before being stored. Like 

before, “narrow convolutions” are performed, which will 

shrink the 12x12 pooled image down to a 8x8 image. When 

adding each of these convolutions up, we perform a simple 

sigmoid operation on each value, effectively limiting the 

maximum value of each to be between 0 -1. This process 

of convolving each of the pooled 12x12 images, adding 

them up, and storing them in a 8x8 image is performed 24 

times, resulting in our second set of feature maps. These 24 

feature maps, each 8x8 in size, are now ready to be pooled. 

The same process as the first pooling is performed here, as 

we will use 2x2 pooling looking for the maximum value in 

each of the 2x2 blocks on the 8x8 feature maps. This will 

result in 24 4x4 pooled images which will be the final 

output of the convolution side of the network.  

    Now that all the convolution and pooling operations 

have been completed, we now need to feed the 24 pooled 

images into the fully connected layer. With how this code 

is set up, we need to flatten the pooled images. Each of 

these pooled images are stored as 2-D arrays, while our 

fully connected layers operate on 1-D arrays. A simple 

formula to map a 2-D array to a 1-D array is used in order 

to compute the final input for the fully connected layer.  

    The fully connected side of the network features three 

layers: the input layer, a hidden layer, and an output layer. 

The input layer consists of 384 separate neurons that will 

each take in one of the values in the now flattened final 

output from the convolution side. Each of these neurons 

will perform a mathematical function on the input, that will 

consist of multiplying the input with a given weight, before 

passing it on to the next layer.  

 

Figure 2. 

 (a). Fully Connected Layer Example. 

(b). Connection from previous layer to single neuron. 

 (c). Accumulation and Activation of Neuron Output 

 

The hidden layer, or the middle layer, of the 

network, consist of only 128 neurons. Each of these 

neurons is connected to the previous layers neurons, and 

each of these connections are represented by a weighted 

value. These hidden layer neurons will take in the input 

from each and every previous layer output, multiplied by 

that given weight, and accumulated. Once these values are 

calculated, the output of each of these neurons will be sent 

through an activation function, which will help keep the 

values within a given range. For the purpose of this 

network, we use the sigmoid (same as the one used in the 

convolutions).  

    For the final output layer, the same process that was 

performed from the first layer to the second layer is done, 

this time for the middle layer to the output layer. This final 

output layer has only 10 outputs, each corresponding to the 

digit 0-9. As mentioned before, the sigmoid operation is 

performed on the output of each layer. The benefit of this 

is that the value will always be between 0-1, meaning that 

when looking at the final outputs, each of the 10 values will 

be in this range. The highest value in these outputs should 

correspond to what the handwritten digit is.  

B. Training 

The general architecture as explained above makes up 

the core of the training model used in the application. The 

one difference for when we train the system is the addition 

of the back-propagation process. This training process is 

shown below in Figure 3. The general idea is that when an 

image is inputted into the network, we can compare what 

the calculated output is compared to the actual input. By 

doing this, we can go back though the network and change 

the weight values accordingly to make sure it correctly 

predicts an image. Each iteration, these weights will 

change more and more, and after a subsequent number of 

training runs, the final set of weights can be used in the 

testing application.  

For the backpropagation, very simple gradient descent 

is implemented. With this particular system, no biases are 

used, so the accuracy will only ever reach so high. Because 

of the lack of biases however, it makes the backpropagation 

much simpler to implement. The first step is to calculate 

the error of the 10 output neurons. Once these are found, 

we can then find the error of the neurons in the hidden 

layer, with respect to the output layer. These errors that are 

found act as a link in a chain; any error from the first layer 

to the second layer, affects the third layer. This is why the 

training will always start with checking the error of the 

output layer, then working backwards. With these errors 

now calculated, we can now perform a multiplication 

operation on the outputs of both the second layer neurons 

and the first layer neurons. The goal of the operation is to 

find new weights that will better estimate the correct value 

of the image. With the addition of some global variables 

that are set at the compile time, the final equation for 

updating each weight value is shown below.  
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Delta = (Learning Rate *Hidden Layer Error * Hidden- 

Layer Neuron) + (Momentum * Delta)  

This “Delta” value is the change in the weight 

value from epoch to epoch. Ideally, with each iteration the 

delta will get smaller and smaller, based off of the error 

values getting smaller and smaller. The momentum and 

learning rate values are chosen by us and can be changed 

to try and produce a more accurate outcome, or possibly 

train the system quicker. 

This process of training is what takes the most 

amount of time when it comes to CNN. Each input training 

image is sent through the system anywhere from 500-1000 

times, each time updating all of the weights, before we train 

the next image. In total, we need to train roughly 40,000-

60,000 images in order to calculate a good set of weights 

to be used in the testing application. Because of these 

amounts of training runs needed, the benefit of the TBB 

libraries will be most apparent when using it on the training 

application.  

 

Figure 3. Training Flow Diagram 

 

C. Testing 

After completion of the training portion of the design, 

the testing of the CNN can now commence. This testing 

section considers the outputted weight model file from the 

training portion for use within this section. This will also 

consider testing images from the MNIST dataset for the 

CNN testing phase to approximate its answer for what 

image is outputting. Finally, this also takes into account the 

same kernel as the previous training section utilized. All of 

these files will set the parameters for the testing section and 

feed the data into the input layer.  This layer will then go 

into the hidden layers that will consider the various 

functions that will need to be able to calculate the final 

output. This calculated output will then compare to the 

actual digit that it read and be able to tell the user what it 

thinks that digit is. This output to the user will then give a 

yes or a no, as well as and both the result and the digit value 

it compared to. By the chance it is incorrect, this will go to 

an error counter that will give a percentage error to the user 

upon completion of the execution. All of these statistics 

will again compare to the TBB implementation against the 

sequential. The overall timing of each subsequent section 

of the design should be much more rapid than the training 

counterpart, with the theoretical timing of each being 

roughly the same. Figure 4 devolves the flow diagram for 

this section of the implementation.  

 

Figure 4. Testing Flow Diagram 

 

III. EXPERIMENTAL SETUP 

In order to develop the results needed for the overall 

project, a variety of testing methods were utilized through 

the use of a virtual machine with the Linux Ubuntu kernel 

installed and the KDE advanced text editor software, Kate. 

This allowed for each student to have efficient testing, 
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without the use of transferring data between personal 

computers and the board. This also increased efficiency 

when debugging the program as a whole. Finalizing the 

design, the provided Terasic DE2i-150-FPGA 

Development Kit was employed in order to test the 

performance of the project upon an Intel Atom® N2600. 

The use of the board provided the project to be correctly 

compiled, sequentially and through TBB, allowing for 

various tests to demonstrate the project.  

Specifically, the sequential tests revolved around the 

timing of the training segment (10 images, 1,000 images, 

15,000 images, etc.), and then taking the outputted model 

weight file into the testing phase. This testing phase would 

then appropriately take in this model file for use when 

running through the various images for guessing. This will 

then output a time taken, as a guess for each of the images 

it will run through.  

The testing of the TBB parallel portion of the CNN goes 

about this training and testing in the exact same manner, in 

order to achieve a clear comparison between its sequential 

counterparts. This TBB will train its separate model 

weights file, which will then go into the testing file, both 

of which will also output a time taken to train and test.  

Theoretically, the training section for the sequential and 

TBB should take a substantially long time, with the TBB 

being theoretically much faster; this faster gain being the 

goal of the project as a whole. The testing portion of both 

networks should follow in a different manner, as the testing 

should run rapidly for each network, with the benefits of 

TBB being possibly non-existent. However, the theoretical 

benefits of parallelizing the training portion would still be 

able to demonstrate the advantages of TBB. Following the 

outputs of each system, the full comparison between the 

two systems is able to be completed. 

IV. RESULTS 

Starting with the training of the sequential, along with 

the TBB, the results demonstrated the drastic time 

improvements that come from the benefit of having the 

design parallelized through TBB. Figure 5 and 6 show 

these time comparisons between the two systems. 

 

 
 

Figure 5. Sequential Training Timing 

 

 
 

Figure 6. TBB Training Timing 

 

Based on these results, it is clear that there is an 

approximate 45% decrease in the amount of time it takes 

for the program to run through the TBB training process. 

This gain was most apparent through the CNN, where the 

parallel_for loops were located, as the FCN and back 

propagation times were closely related to each other. These 

results were estimated theoretically to be around this 

significant and proves the design of our project did 

successfully implement the TBB functions. All of these 

results stem from the use of 512 epochs, which mean that 

each image is trained separately 512 times, whereas if we 

did a single epoch, the CNN improvement falls off to 

almost zero.  

Moving forward, taking the model weights file 

generated from the training, each separately trained model 

file was implemented into the testing for TBB and 

sequential, respectively. Theoretically, the benefit should 

not be that significant, as the time to test each image is so 

small that the benefits of parallelization begins to fall off. 

However, based on Figures 7 and 8, the testing did allow 

for a slight improvement on the testing time. 

 

 
F 

Figure 7. Sequential Testing Timing 

 

 
 

Figure 8. TBB Testing Timing 

 

From Figure 7 and 8, the major time improvements gain 

result from the convolutional 2, as this gain results in the 

biggest time decrease between the two systems. Taking 

into consideration the low accuracy, these do show the 

same accuracy between the two systems. This is important 

to note as both systems are then functioning properly and 

allows for the timing comparisons to be justified.  

 

V. CONCLUSIONS 

Following the results from the project, various points in 

regard to the project design and overall process is able to 

be discerned. Working with the convolutional side of a 

neural network and the parallelization through TBB was 

both a learning process and a good experience for both 

students, as this was a new concept they had not worked 
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with previously. This included various challenges, and 

research into how convolutional neural networks worked 

in order to try to correctly implement one, as well as 

continue working with the TBB knowledge learned within 

the class. Following the results, it is no question that the 

accuracy left much to be desired, however noticing that 

both the sequential and TBB ended up with the same 

accuracy proves that both systems worked correctly to each 

other. Furthermore, it is plainly seen that training had a 

great decrease in time through the use of parallel_for loops 

within the convolutional side of the TBB training. This 

decrease in time is largely beneficial, as it can take up to 

~32 hours of training sequentially, and with the TBB, this 

time decreases to ~16 hours. More implementations of 

parallel_pipeline, as well as parallel_reduce would have 

seen large time decreases as well, however issues 

implementing these processes left them out of the final 

design. These improvements could be very noticeable if 

implemented, and a further design would surely add these 

into the final code. Finally, the issue of accuracy is a major 

impediment with the current design, and further improving 

this accuracy would be very beneficial to the final product. 

Conclusively, the knowledge gained on this project overall 

from the TBB multithreading to working with the 

convolutions within a neural network were very beneficial 

and is something both students hope to continue working 

on in the future.  
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