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I. INTRODUCTION 

The objective of the project is to do an analysis on 
matrix multiplication algorithms and see performance in 
different cases between a naïve sequential implementation 
and a TBB parallel implementation using whatever 
functions are appropriate. Typical sequential matrix 
multiplication and Strassen will be the algorithms of focus 
and the first step is to develop a naïve algorithm for square 
matrices of any size. The test cases will be grayscale images 
processed through Matlab to create binary files and the 
application will return the modified output. The results will 
be compared numerically against Matlab’s native 
multiplication function and visually using a recognizable 
image filter as the “B” matrix in the operations. Once 
validated for the test cases of different sized square images, 
performance analysis can be done and recorded, and 
conclusions can be made. 

II. METHODOLOGY 

A. Design 

The analysis will revolve around 4 square images that 

were selected to represent a range of element numbers. 

Their specifications are listed below: 

 

small 128x128 

medium 256x256 

large 512x512 

very large 1024x1024 

Table 1: Image properties 

 

Through the use of a Matlab script, the images can be 

converted into grayscale and formatted as a binary file for 

use by the application and then reformatted based on the 

application’s output as another binary file. The reformatted 
output can be compared against an image created by the 

Matlab script and the image difference will be displayed. 

The input will be used in four ways when it gets to the 

inversion application: a naïve sequential approach of the 

“normal” algorithm, a parallel approach of the normal, a 

sequential version of the Strassen, and a parallel version of 

the Strassen that leverages the parallel normal. This allows 

for efficiency comparisons between both parallel methods 

and a speedup comparison between different versions of 

the same algorithm. The model for the system can be seen 
in the figure below 

 

 
Figure 1: Project Model 

B. Multiplication Algorithms 

The first algorithm of focus is a normal naïve matrix 

multiplication, which utilizes a sum counter and goes row 

by column to compute the new value for each matrix point. 

Square matrixes with dimensions N x N will have a 

computation complexity O(N3) when performing this 

method, implying that doubling the matrix size will require 

8x the computations to achieve and so on. 

An alternative method is the Strassen algorithm [1], 

which begins with splitting all matrices into submatrices. 

An inherent requirement is that the cases must be of size 

2K. 

 

 
Figure 2: Matrix subdivision  

 



 

 

 

The idea of this subdivision is that the matrices can be 

partitioned to break up a large multiplication into 8 smaller 

ones, an action that does nothing for the computation 

complexity. The main bulk of the Strassen algorithm is 
how it transforms the 8 input submatrices into 7 co-factors, 

as seen below 

 

 
Figure 3(a): Co-factor Calculation 

 

 
Figure 3(b): Output Computation 

 

Looking at the equations listed, the multiplication 

operation is considerably less straightforward and the 

potential for improvement over a typical multiplication is 
not immediately visible. The improvement comes in the 

computational reduction from 8 sub-multiplications to 7 

sub-multiplications and various additions. This reduces the 

order of complexity from 3 to log27 or O(N3) vs O(N2.80). 

The theory behind Strassen is that the operations are 

done recursively when computing the co-factors, reducing 

the needed multiplications to be 1 x 1. In practice, this full 

recursion is never done for anything above size 16 because 

the amount of co-factors and size needed would increase 

exponentially [2]. The practical implementation, and the 

one implemented here, is to divide only once and perform 
the needed 7 sub-multiplications with a different algorithm 

that is optimized for N/2 sized submatrices. The “normal” 

algorithm is leveraged for the subs in this experiment.  

C. Implementation/Parallelism 

The Strassen algorithm required the development of a 

custom class that could implement the submatrix 
functionality required. On construction, the class would 

assign pointers to the 4 “quadrants” of the linear matrix 

array and allow access to functions that required it. The 

class also had a method to merge 4 quadrant vectors 

together to create an output linear matrix when the Strassen 

operations were finished. The Strassen function utilizes 

two temp arrays and seven co-factor arrays for use in 

addition and for passing to the simple matrix multiplication 

function. The simple multiplication function takes in two 

input matrices as linear vectors and does a 3-dimensional 

for loop based on the size of the vectors that are passed. 

The main parallelism strategy was the use of 

TBB::parallel_for over both 3D and 1D blocked ranges[3]. 

The normal multiplication exists as a lambda function with 

a 3D blocked range from 0 to passed size. For vector wide 

addition and pointer assignments, a 1D range was 
leveraged with parallel_for in the Strassen matrix 

construction and sub-calculations. No 2D ranges were used 

because they would require a pairing with parallel_reduce, 

a design pattern where the code “density” might outweigh 

possible improvement over a 3D range.  

III. EXPERIMENTAL SETUP 

The actual application and all of its methods will be ran 

on the same board while utilizing the Intel TBB library and 

a Makefile. Performance time will be analyzed by the 

systime header and the functionality it offers. The four time 

captures will be performed in the same main() for 

consistency and 10 trials will be taken for each size, barring 
absurd wait times. Matlab will be utilized on a personal 

computer to initialize the binary file, generate its own 

matrix product off the input matrix, and construct a 

difference matrix between the experimental and simulated 

values.  

 

IV. RESULTS 

The timing results for all cases can be seen in the table: 

 
Size Seq 

Norm 
Seq 

Strass 
Para 

Norm 
Para 

Strass 

128 37009.1 12521.7 26648.1 31785.4 

256 279550 219712 212504 147237 

512 15593915 4379200 2215604 1477464 

1024 141.2 M 114.2 M 60116914 12895696 

Table 2: Time results (us) 

 

For a visual look at the data, here is a graph of 

performance:  

 

 
Figure 4: Graph of performance 

  



 

 

Looking at a measure of the sequential normal vs the 

results from parallel Strassen, the following speedup can 

be observed:  

 

128 1.16x 

256 1.89x 

512 10.55x 

1024 10.94x 

Table 3: Parallel Strassen Speedup vs Seq Normal 

 
From these results, it is plain to see that parallel Strassen 

is the method to use for most cases and it will continue for 

larger matrix sizes. An interesting datapoint is the 128 x 

128 case, where sequential Strassen held the speed 

advantage by ~2x over anything else. Analysis would 

conclude that Strassen is faster than normal in both 

sequential and parallel and it can be shown that parallel 

loses speed over sequential when sizes are small, namely 

64, which is the size of the submatrices in that case.  

The results also follow the theoretical computation 

complexity, in that doubling the matrix size should require 
8x the computations. Further analysis could be done with 

double values for the B and C matrices instead of integers 

to assess performance, with the caveat that results would 

look like white noise if the B filter isn’t created 

algorithmically for large sizes. 

V. CONCLUSION 

To give an overview of the objective and results, there 

is merit in trying to optimize matrix multiplication using 

different algorithms and methods of parallelism. The 

speedup from Strassen and TBB outweighs the extra 

development needed to implement them around a naïve 

approach. There was a clear divide from cases that were 
too small for parallelism to be effective and cases where 

parallelism shined, information that’s to the benefit of 

future applications and developers. A rudimentary test case 

was used for the purposes of easy visualization but the 

application can be expanded to more involved and 

engaging filters. 
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