
32-Bit Microprocessor
ECE4710 – Final Project

Lukas Popovic & Cameron Vogeli
Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
lukaspopovic@oakland.edu, cmvogeli@oakland.edu

Abstract—To gain a better understanding of one of the world’s
most popular digital systems, this project involves the design of
a 32-bit multi cycle microprocessor. Machine instructions may
be loaded using either a text file or the UART protocol, and
specified memory locations are uploaded back to the computer
through UART. Using a versatile instruction set, an expandable
memory interface, and functionality similar to RISC
architectures today, this microprocessor can execute basic
programs at the 32-bit level.

I. INTRODUCTION
The design of the 32-bit PicoBlaze microprocessor was

guided by the goal of creating a compact yet versatile
processor with a robust instruction set. In the initial stages
of the project, the team outlined several core arithmetic and
logic operations commonly used in industry-standard
processors. This included basic operations like addition and
subtraction, as well as logical functions like AND, OR, and
XOR. The instruction set was designed to be flexible,
allowing for operations using either immediate values or
register-to-register interactions. Immediate-based
instructions were clearly distinguished with a unique "I"
suffix. To enhance the processor's functionality, shift and
rotate instructions were incorporated, supporting single-bit
operations and simple multiplication and division
techniques. These instructions used a consistent format,
shifting or rotating one bit at a time with various options for
what to shift in (like 0, 1, MSB, or LSB). The inclusion of
these instructions, along with other essential operations,
provided a comprehensive and versatile foundation for the
processor's instruction set. Beyond arithmetic and logic
instructions, the project also focused on branching,
comparison, and memory-related operations. The branching
mechanism employed conditional and unconditional jumps,
with support for subroutine calls and returns. To
accommodate these operations, the processor's program
counter was designed to handle a wide range of addresses,
allowing for flexible control flow. Additionally, the call
stack could hold up to 32 addresses, ensuring efficient
subroutine management. Memory storage and data transfer
instructions were also included, albeit with some limitations
due to time constraints. Data could be stored and retrieved
through registers, and memory utilization was minimized to
maintain a compact design. Despite these limitations, the
instruction and data memory were designed with expansion

in mind, allowing for future scalability.The implementation
of the microprocessor also involved a robust experimental
setup, including simulation and testing using Xilinx's
Vivadosimulator. This ensured that each component
functioned correctly before integrating them into the final
design. Although the project faced challenges,particularly
with the UART loader, the overall result was successful,
yielding a functional 32-bit microprocessor with a versatile
instruction set and ample room for future enhancements.

I. METHODOLOGY

A. Architecture Overview

Table 2.1: Arithmetic and Logic Instructions

At the beginning of the project, it was
decided that this processor at minimum should
include most arithmetic and logic instructions
commonly used in the industry[2]. As shown in the
table above, addition and subtraction, each with
and without carry, were included. And, or and xor
instructions are also available. For each of these
operations, the user may use either registers or
immediate values for operands. For clarity,
instructions that make use of immediate operands
have an “I” suffix to distinguish from register type
instructions.



Table 2.2: Shift and Rotate Instructions

As seen in the table above, basic shift and
rotate instructions are also included to provide
single bit shifts and rotations, multiplication and
division. For simplicity, these instructions can only
shift or rotate one bit per instruction. The user can
either shift in a 0, 1, the MSB or LSB of the value
in the specified register. Each of these instructions
uses the single register format with the same
opcode but with differing function values.

Table 2.3: Compare and Test Instructions

Register and immediate compare and test
instructions were the last logic instructions
considered important to include in this instruction
set. These instructions aid in the previously
discussed instructions as well as conditional branch
instructions. As further explained in the report,
there are no explicit “branch if greater than”, less
than, etc. Instead, the user may execute the CMP
instruction in conjunction with a branch instruction
and select the function necessary to achieve the
same result.

Table 2.4: Data Transfer Instructions

Register to register transfer, memory
storage and load instructions were also included in
the final set. Due to time constraints, the only way
to store data into the data memory is through the
use of registers, thus there is no direct way of
storing one immediate word into memory.

Table 2.5: Jump and Call Instructions

The user can jump and call up to 65536
different addresses, thanks to the 16 bit address
width. It should be noted that to keep memory
utilization minimal, only 1024 addresses can be
accessed due to the address space of the current
instruction memory, having only 10 bits per
address. Each of these instructions are also
conditional; depending on the function chosen, the
system can jump to or call a subroutine depending
on the status of a specified ALU flag. Similarly, the
user may return from a subroutine conditionally or
unconditionally, as shown in the table below.

Table 2.6: RTS Instructions

Finally, conditional and unconditional
branch instructions are also made available, and
can be seen in the following table. Conditional
branches depend entirely on the function bits
provided in the instruction and correspond to the
ALU flags set in the prior instruction.

Table 2.7: Branch Instructions

To achieve the bandwidth of a typical 32
bit processor, the system bus and each register
inherently has a width of 32 bits. 32 general
purpose registers are also included to avoid delays



in data manipulation. Other notable system
registers are also described in the table below.

Table 2.8: User and System Registers

As previously stated, it was opted to keep
memory utilization at a minimum while at the same
time maximizing the possibility of future memory
upgrades if the user so chooses. To achieve greater
bandwidth, the instruction and data memory have
been placed in separate banks, each with their own
bus to and from the datapath. In terms of data
memory, the user has access to 64 32-bit words.
The instruction memory can hold 1024 32-bit
instructions. Lastly, the call stack can hold 32
addresses at a time, and uses its own register bank
to do so.

Table 2.9: System memory

B. Instruction Formats

Table 2.10: Instruction Formats

From the previously discussed
instructions and the targets for the total amount of
memory and registers, it was decided that five
different instruction types must be included. Each
of these instruction types are detailed in the table
above. The unused 16 LSBs in the R-type
instruction may have been used for an additional
source register or a function field, but due to time
constraints this was not considered.

Figure 2.1: Top Block Diagram

Above is a top-level diagram of the
microprocessor, including the I/O and clock divider
peripherals. The control circuit includes the
instruction decoder, program counter and the stack.
The datapath is essentially the other components.

C. Loader

Figure 2.2: Loader Block Diagram

This VHDL code defines a UART
transmitter control module with a finite state
machine (FSM) that manages the transitions of
different states during UART transmission. The
code implements various components, including
counters (my_genpulse_sclr), shift registers
(my_pashiftreg, my_pashiftreg_sclr), and two FSM
processes to control state transitions and output
behaviors. The first FSM (Transitions) regulates
the flow of data through UART by monitoring and
controlling signals like TXD, zC, and zQ. It
transitions between three states, S1, S2, and S3,
depending on the values of these signals and
manages FSM outputs to ensure correct timing and
data transmission. The second FSM (Transitions2)
focuses on operations related to 32-bit data
shifting, including clearing signals and generating
bit-related outputs. The FSMs handle data
preparation, transmission, and the synchronization
required for UART operation. Various outputs, like
EC, ER, sclrC, EZ, and others, are set based on the
current state to ensure proper UART data shifting,
timing, and control flow.

D. Instruction and Data memory
To save FPGA resources, block RAMs

were used in place of registers for these two
memories. The key difference between the two is
the instruction memory is a single port RAM, while
the data memory is a true dual port RAM. The first
port of the data memory is used by the datapath,
while the second is used by the output circuit.
Since the output circuit does not need to write to
this memory, that port was set as read only. The



minimum read/write time of each of these
memories is one clock cycle. Since each instruction
takes two clock cycles to complete, there has been
no issues in terms of data storage or retrieval.

E. Instruction Decoder

Figure 2.3: Instruction Decoder

The instruction decoder is a single FSM
that sends control signals to the datapath, and only
receives one signal from the loader circuit. Since
each instruction takes two clock cycles, the FSM
only needed three states to operate. The first state
initializes the stack to 31 and clears the ALU flags.
The second state executes the first part of the
instruction, and updates the program counter.
Because the datapath operates on a single bus, the
source register of an instruction must be latched on
the ALU operand A register. Since the program
counter is updated at this point, JBC instructions
must be completed in this state. The third state
finishes the instruction, if necessary. Instructions
that utilize a source operand are loaded onto the B
operand of the ALU, and the destination register, if
necessary, latches the new data from the bus. Since
all instructions are finalized in this state, the ALU
flag flip flops are enabled to accept their new
values. Below is a detailed ASM diagram of the
FSM.

Figure 2.4: Loader Block Diagram

F. Datapath

Figure 2.5: Datapath Block Diagram

The datapath, as depicted in the preceding
diagram, comprises several components. Firstly,
there is a Register File containing 32 registers,
many of which are 16 bits wide. Additionally, there
is an Arithmetic Logic Unit (ALU) that retains
flags such as C (carry) and Z (zero), using flip
flops. Lastly, there is an I/O interface incorporated
into the datapath. This configuration allows the
datapath to execute the microoperations necessary
for an instruction based on the Control signals it
receives from the Instruction Decoder (ID).
Notably, certain functionalities are facilitated
through specific control signals.

G. ALU
The ALU described here operates on two

input operands, A and B, of N bits each, along with
control signals for selecting the operation to be
performed. The ALU architecture comprises
various components such as adders, shifters, and
flip-flops, each serving specific functions within
the computation process. Notably, the adder
components handle addition and subtraction
operations, while the shifters facilitate shifting
operations in both left and right directions.
Additionally, flip-flops are utilized for storing and
synchronizing control signals and status flags like
carry, overflow, zero, and negative. The code
incorporates multiplexers to select the appropriate
result based on the control signals provided. These



results include the outcome of arithmetic and
logical operations between A and B, as well as the
shifted versions of A. Moreover, the status flags are
updated accordingly to reflect the outcome of the
performed operations, aiding in subsequent
decision-making processes within the digital
system.

H. Program Counter

Figure 2.5: Loader Block Diagram

The program counter is able to handle
conditional and unconditional branches, jumps and
subroutine calls. The offset used in the branch
instructions is a 7-bit signed number, which is first
sign extended then added to the current program
counter value, which has also been sign extended
for the addition. When a branch instruction has
been issued, the offset is added to the current PC.
On a subroutine call, the current PC is saved on the
stack, and the PC becomes set to the address
specified by the ja_ca signal. Jump instructions are
similar, except the PC isn’t saved to the stack. On
return from subroutine, the previous PC is loaded
from the stack and 1 is added to it. The correct
operation is set by the instruction decoder,
specifically using the js, ss, and E_PC signal. To be
clear, the instruction memory uses only 10 bits for
the address, so the 6 MSBs of the ST and PC
signals are discarded upon reaching the instruction
memory.

I. Call Stack

Figure 2.6: Call Stack Block Diagram

The call stack is essentially a stack data
structure that holds the program counter value upon
a subroutine call. When a subroutine is called, the
current program counter is pushed onto the stack
by setting the ‘en’ and ‘we’ signals to 1 from the
instruction decoder. The current stack pointer
decrements and at the same time stores the current
PC at the register corresponding to the updated
stack pointer. On a return from subroutine
instruction, the stack pointer increments by having
the ‘en’ signal set high by the instruction decoder.
In either case, the current address specified at the
current stack pointer value is always available on
the ‘ST’ output. If the stack is full, the stack
pointer will cycle back to 32, overwriting that PC
value. If the stack is empty, the stack pointer will
not increment beyond its maximum value of 31.

J. Output

Figure 2.7: Output Block Diagram

At its core, the architecture includes a
finite state machine named uart_output_fsm,



responsible for coordinating the entire transmission
process. It manages tasks such as data serialization
and signaling when transmission is complete.
Accompanying this FSM are components like
uart_rx, which handles data reception and
acknowledgment signaling, ensuring data integrity
during transmission. Additionally, custom
components like my_genpulse_sclr generate pulses
to control timing and synchronization, crucial for
accurate data transmission. The architecture also
features a shift register component, my_pashiftreg,
aiding in the serialization of data bits for
transmission. Through signal routing and
multiplexers, the code orchestrates data
manipulation and routing, ensuring smooth and
reliable communication between the FPGA and
external devices[3].

II. EXPERIMENTAL SETUP
To verify the functioning of the processor, each

component as well as the overall top level circuit was
simulated using Xilinx’s Vivado 2019.1 behavioral
simulator. Obtaining correct functionality of each
component was essential before simulating the processor in
the top circuit. The stack for instance needed to successfully
push and pop given address values and always show the
current address at its output. The program counter needed to
provide the correct count depending on the control signals
provided to it. The datapath needed to receive the correct
control signals from the instruction decoder that also needed
to send them at the correct times, depending on the
instruction received from the instruction memory.
After behavioral simulations were deemed successful,

UART input and output was tested using picocom, a
minimal dumb-terminal emulation program[4]. The test
program included the following:

Figure 3.1: Test program

In the above program, four different numbers are first
loaded onto four separate registers. Each of these registers
was loaded into the last four locations of the instruction
memory. Using two switches as a selector, the value located
at the selected address was sent from memory to the
connected computer upon pressing the button BTNC[1].

III. RESULTS

Due to time constraints, the implementation of the UART
loader was unsuccessful. In its place, instructions were
loaded directly into the instruction memory, through the use
of a coefficient file. In doing so, the correct output was
produced on the terminal according to its corresponding
address. It also turned out that the words produced on the
output were reversed, as the bits were sent with the MSB
being first. Lastly, the system clock had to be divided down
to 25MHz due to combinational delays.

CONCLUSIONS

Overall, the project was successful. A 32-bit
microprocessor was produced, with an extensive amount of
instructions. Both memories are expandable, providing the
possibility of incorporation into a larger design. Having
larger instructions could mean the possibility for more
instructions, each with their own functions. Improvements
could be made to the UART loader and output, making the
two function as they should. Other improvements could
include having two system buses instead of one, pipelining,
and readjusting the instruction formats. Lastly, it would be
interesting to decrease combinational delays to boost the
system clock up to 100MHz as opposed to 25MHz.

REFERENCES

[1] “Nexys A7 Reference Manual.” Digilent Inc., Dec. 12, 2018

[2] Llamocca, Daniel. “Unit 6- Microprocessor Design” VHDL Coding for
FPGAs.
http://www.secs.oakland.edu/~llamocca/Courses/ECE4710/Notes%20-%20
Unit%206.pdf

[3] Llamocca, Daniel. “Unit 3: External Peripherals: Interfacing” VHDL
Coding for FPGAs.
https://www.secs.oakland.edu/~llamocca/Courses/ECE4710/Notes%20-%2
0Unit%203.pdf

[4] N. Patavalis, “NPAT-efault/PICOCOM: Minimal
dumb-terminal emulation program,” GitHub,
https://github.com/npat-efault/picocom (accessed Mar. 20, 2024).


