
The Chess Mate

Your Companion for Masterful Moves

Aidan Gallagher, Zachary Jump, Bradley Taylor, Avie Sachdeva
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: aidangallagher@oakland.edu, zjump@oakland.edu, bradleytaylor@oakland.edu,
aviesachdeva@oakland.edu

Abstract— The Chess Mate serves a purpose to teach
players how to play chess or assist new players while
also elevating the overall gaming experience. Players
who interact with The Chess Mate will begin to learn
and understand certain strategies for an improved
experience in future games. At its core, the program
operates on the principle of real-time piece tracking,
which intuitively maps the user-selected moves.
Beneath the sleek chess surface lies a carefully
orchestrated electrical system that optimizes
functionality without compromising aesthetics.
Driving the computational and display processes are
the Dragon and Artix-7 boards, which are set up
through serial link to communicate and pass
information to complete the task at hand. The
completion of this project will transcend the
conventional gaming experience and will help guide
and teach chess players of any level.

I. INTRODUCTION

As a team, we wanted to contribute to the evolution
of chess by implementing our VHDL and embedded
software skills into a more modern version of the game
we call The Chess Mate. Similarly, the game design
revolves heavily around two primary aspects, the
embedded software within the Dragon12 board that
controls the instruction side of the game while the logic
design within our Nexys board that handles displays such
as the clock found on the LCD along with the LED’s
mounted on the circuit board beneath the glass chess face.
Both boards hold an important role in the functionality of
the game, without one working properly the game will not
work as intended. The general structure of our circuitry
and the VHDL logic we implemented can be found in
figure 1. As shown in figure, there are four circuits within
the VHDL block diagram. This included the UART
control circuit to send and receive data, the Matrix
Keyboard and the LED Control Circuit resembling the
rows and columns of a chess board with corresponding
LED’s, and the 7 Segment Debug Control Circuit to

validate and test our design. Using this design, we can
assist the players in every way possible by guiding the
chess piece location upon startup involving a color code
mirroring every chess piece along with indicating their
next move.

Figure 1: Block diagram

II. METHODOLOGY

A. Hardware

As mentioned previously, the project involves the
Dragon12 HCS12 microcontroller and the Nexys Artix-7
FPGA board, however the project originally was drafted
without the involvement of an FPGA board. It was later
decided that for this project to correctly do what we
intended, we must involve the FPGA in controlling all
aspects regarding the external circuit interfacing as the
Dragon 12 would not have sufficient I/O capabilities.
Likewise, we found that there would be complications and
major roadblocks that would make the project more
complicated without the help of the FPGA board. With the
addition of the FPGA, we used the FPGA to implement the
piece detection reed switches, the addressable LED string,
and LCD control circuit with the two devices being able to
communicate via UART. Accounting for the chess game
clock feature on the FPGA was also an easy decision to
make since the ECE 2700 and ECE 4710 labs require much

practice with clock manipulating components and to
minimize the different data types being needed to transmit
between the boards.

Knowing the responsibilities of each board, we then
started drafting what hardware we would need to include
beneath the board to notify the Nexys of empty spaces,
occupied spaces, and the representation of the spaces upon
certain tasks. At first, we decided that we would
implement photoresistors to detect spaces occupied since
the resistor is light dependent meaning that a chess piece
placed above it would limit the light signaling that the
space is occupied. However, under further investigation,
we found that it would be difficult to implement these
resistors on a circuit design that is primarily designed to
light certain spaces as light may bleed through spaces
which in result will affect the light on other resistors. With
this in mind, we decided to involve a reed switch since it is
only activated by a magnetic field and not light. Within
this switch you will find two metal conductors encased by
a glass casing. When a chess piece attached to a small
magnet is placed above this reed switch, the switch will
then close signifying to the Nexys that a space is occupied.
With this in mind, we now needed a way to separate each
one of the 64 spaces to make them addressable. Similarly,
we decided to involve diodes to allow multiplexed matrix
input data connected to RGB LED’s to address specific
squares with specific colors needed as seen in figure 2 and
figure 3.

Figure 2: Glass Chess Face

Figure 3: Circuit Board

B. Software

The Chess Mate system takes advantage of two
programs to design this project with: CodeWarrior IDE and
Vivado. This implementation of the game of chess is
credited almost exclusively to the Dragon12, its IDE, and

Embedded C Programming Language. The software design
in VHDL through Vivado treats the FPGA and the circuitry
it houses as an interface/component of the Dragon12 and
the Chess Mate C programmed to it. If we had used another
communication method besides UART, the FPGA would
be considered the “slave” in the system and the
microprocessor would be considered the “master”.

The FPGA required a Full Duplex RS-232 serial
communication to simplify timing of lighting and piece
move detection on the board. From earlier notes in Unit 3,
we had a FSM and Datapath for UART transmit, but had no
implementation so we started there, followed by the
development and testing of a UART receiving FSM and
Datapath. Since the TX/RX systems are so similar in there
requirements, they were implemented in a single VHDL file
with generic input parameters to allow reuse in future
projects with runtime configurable Baud Rates. Since
reusability was highly desired, the UART function only
operates in 8N1 operation mode, so the addition of TX
Request and RX Interrupt signals were added to trigger
other circuits inside the FPGA. To keep the development of
the UART Receive logic simple, we elected to simply delay
until the middle of the first data bit and then sample during
the middle of each bit instead of observing for noise and
debouncing to detect a valid data frame.

From the UART received
data and the related interrupt, we
can concatenate the last two
bytes received to form the 16-bit
status word from the dragon 12
and can use the MSB as a flag to
signify a complete word was
received and available for
decoding and updating the
Addressable LED circuit array.
The LED array requires 24-bits
for full color representation, so a
3 to 24 LUT is used to allow for
simplified status word to be used
in the dragon 12, with the low
order byte from the dragon 12
now being used for the LED
array index to be updated when the full word is received
over UART.

The Reed switch array was
designed and wired in the
standard Multiplexed
keyboard arrangement, with
1N4148 signal diodes at each
location to allow for all
locations to be detected
simultaneously and
accurately. A simple 250us
pulse was used to signal
reading of a column of reeds, changing which row was to
be powered up, and to track that all positions were read.
After all rows were enabled and read, the 64-bits are shifted
into a status register after the last state of the status register
is saved to a memory register, with any changes now being

easily detected by a simple XOR operation and a priority
decoder to determine the highest index that changed. The
value from the priority decoder was then prepended with the
state of the changed index onto the MSB and sent over
UART to the dragon, guaranteeing a unique byte for all
changes to the reed states beneath the chess board.

To add to the usability of the board, the state of the reed
switches was mapped to the 8 7-Segment displays which
were treated as 64 individual LEDS for ease of viewing if
any reed wasn’t being detected. With the change of the
Display Mode input to a High, the 7-Segment displays can
also show the Chess Clock and last byte received over
UART if the offboard LCD becomes unplugged during the
game and cannot issue a reset to reconfigure the LCD to a
working state.

The LCD control circuit
was designed to take a
variable data size input to be
configurable for any
HD44780 compatible LCD
using 8-bit data transfer
mode. For Chess Mate usage,
the display data is hard coded
for most of the LCD
characters, with the top row
being updated with the player
clocks from the Clock Control
Circuit via BCD to keep the
ASCII decoding simple.

The clock control circuit
generates an internal 1ms
pulse from the 100Mhz clock,
which is then used to track the
time elapsed for each player
during their enabled period.
Subtracting the elapsed time
in ms from 15 minutes, the
circuit generates the decimal
value of time remaining in ms. The time remaining is fed
into a Binary to BCD iterative converter at each ms update,
with the full second values being pulled from and stored in
separate 12-bit registers for display usage. Future revisions
to include the features used on other chess game modes such
as awarding additional time for quick moves.

III. EXPERIMENTAL SETUP

Testing and debugging this system is slightly tricky
since the two systems require to be connected and
communicating before an entire program can be stepped

through. Once UART was verified to successfully transmit
the bits expected to be received, debugging and testing the
two programs was simple. CodeWarrior’s debug feature
allows us to step through every moment in our game while
monitoring our serial communication results in real time.
Vivado’s simulation element was an avenue for debugging
and tweaking the VHDL code while the C program was still
being built. By the end of the project, the hardware and
circuitry across the system became the tallest hurdle to
overcome. Many more wiring, soldering, and power issues
presented themselves than were originally expected.

IV. RESULTS

From our development and debugging of the physical
circuit, we discovered that the Nexys components were
operating as we intended them to during game play, but
problems with the LED and reed switch array prevented us
from being able to complete a full game of chess as we
were unable to detect row H, column 3, and column 4, and
it was discovered after soldering all the devices down that
the LED address lines were oriented backwards so the
index locations were invalid resulting in unusable led
states for position suggestions to the user.

CONCLUSIONS

Overall, the project itself tested three major aspects, our
overall understanding of embedded C, our overall
understanding of VHDL, and the importance of teamwork.
It was exciting to see what a drafted design was once then
shaped into a physical product that as a team we could
present to others. However, this final product was not
presented without roadblocks along the way. Moreover, this
was something that we expected since the scope was
widened to aspects, we were not familiar with involving the
communication between the Dragon microcontroller and
the Nexys FPGA. There are of course ways that the game
could be improved within the near future. These
improvements include but is not limited to the embedded
design within the microprocessor, the physical display, and
of course the cost of the project. As the project is something
that can be mass produced to the public, we would like to
have a more perfected microprocessor that correctly
executes instructions to the FPGA with higher level
instructions involved such as pawn upgrading. The display
would also be changed to involve a box to encase the project
with a goal to be plug and play making it easier for the
players.

