
Artificial Neural Network

David Kosa, Polly Jane Bates, Gerard Griest
Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
dkosa@oakland.edu, pjbates@oakland.edu, gtgriest@oakland.edu

Abstract—This project presents the development of a
handwritten digit recognition system using an Artificial Neural
Network (ANN) implemented on an FPGA. The primary goal
is to utilize FPGA technology to efficiently execute neural
network options on hardware. The ANN comprises an input
layer for 14 by 14 grayscale images, a hidden layer of 16
neurons, and an output layer of 10 neurons. Implementing the
network in VHDL, we employed parameterized design and I/O
text files. Finite State Machines (FSMs) serve control and
timing purposes for iterating through neurons. Training data,
including weights and biases, were pre-computed using
MATLAB which was then used in the VHDL design. The ANN
performed accurately over a variety of tests able to distinguish
all 10 digits.

I. INTRODUCTION
Neural networks are well-known in the area of data

science and machine learning. Often implemented in
high-level software, neural networks are especially good at
determining patterns that are not necessarily apparent nor
expected to human programmers. Neural networks come in
many forms and are found in many applications from
vehicles to smartphones. Neural networks consist of
neurons. A neuron has an inherent quality of "activation".
Neurons are located in layers categorized as input, hidden,
and output layers. Each neuron sends its activation to every
neuron in the next layer. The activation from a neuron is
multiplied by a unique weight dependent on which neuron is
sending and which neuron is receiving the activation. The
receiving neuron of all these activation-weight products
sums the inputs along with a bias. The bias is unique to
every neuron in the network. A neuron's activation is
decided by the sum of the weight-activation products and
bias after going through an activation function. There are
many options for activation functions such as the sigmoid,
ReLU, hyperbolic tangent, etc. ReLU is a common choice
due to its linear nature and simple computation (Figure 1).
The result of the entire neural network is communicated by
the activations of the output layer.

Figure 1: ReLU Activation Function Graph

Figure 2: Neural Network and Neuron Illustration [1]

Neural networks must be trained with large data sets.
During training an input will produce a likely incorrect
output. A loss function will evaluate how different the actual
output is from the desired output. Additionally, the weights
and biases are adjusted to improve the accuracy of the
output. This process of small adjustments is repeated for
data in the set until the network is sufficiently trained. Once
trained, the network will be able to correctly produce an
output even if it has never encountered that input before.

Here we aim to implement an artificial neural network
with hardware using FPGA technology rather than a
software approach.



II. METHODOLOGY

This Artificial Neural Network (ANN) performs the
classic operation of identifying handwritten numbers. The
input layer accepts a 14 by 14 grayscale image of a
single-digit handwritten number. The neural network
consists of one hidden layer of 16 neurons and one output
layer of 10 neurons. The ANN takes in no external inputs.
The input activations are received as constants during
synthesis via a text file. The ANN outputs a done signal and
the digit it guesses in binary.

The design is broken down into the top file, which
contains the layers, a control circuit, a comparator, and a
display circuit. Within the layers are neurons. These
components are elaborated on in this section.

Figure 3: ANN Top Block Diagram

Implementation of the ANN in VHDL greatly benefits
from parameterizing the code for the neurons and layers.
Neurons are implemented using for generates and require
numerous weight vectors which is aided when designed
with parameterization in mind.

The program operates iteratively; based on the research
of Dr. Llamocca, a pipelined approach will require more
resources than is available in the Nexys-A7-100T Board to
implement. The project's main purpose is to present the
operation of the ANN on the Nexys-A7-100T. We chose to
implement the iterative/multiply-and-accumulate design [1]
because of limited space on the board and low throughput is
acceptable for this project. The pipelined design may prove
more useful given a high load of images to be processed
which is not necessary for this project.

A. Neurons
The neurons are divided into two types, the hidden

layer neuron and the output layer neuron. Both types take in
the activation values of the neurons from the previous layer,
a neuron selector, weights, and a bias. A bias select signal
and accumulator register enable are also inputs to the
neuron. Neuron selector, bias select, and accumulator
register enable are controlled by the FSM in the layer
design. All activations, weights, and biases are in signed
fixed-point format. All weights and biases are in the format

[8 7]. The activations of neurons in subsequent layers use a
larger, more precise format. Activations vary in size with the
inputs as [9 0], layer 1 activations as [22 4], and outputs as
[32 8]. These sizes are based on a model described in [1].
The hidden layer neurons are slightly different from the
output neurons in terms of the number of activations
accepted from the previous layer.

Inside the neuron, the weights for the proper layer are
multiplexed as input to a multiplier. The activations from
the previous layer's neurons are multiplexed with the FSM
outside the individual neuron design. A combinational
multiplier was chosen for the design. An adder recursively
adds the weight-activation products and the neuron bias.
ReLU is the chosen activation function for all neurons. A
general block diagram for the neuron is shown in Figure 4.
The weights and biases are already obtained through
training in MATLAB thanks to Dr. Llamocca and are read as
constants using a text file for synthesis.

Figure 4: General Individual Neuron Block Diagram

B. Layer
One layer of the neural network consists of the neurons,

an FSM, registers to capture input activations, and a
multiplexor to choose activations. Layer 1, otherwise known
as the hidden layer, consists of 16 neurons, while layer 2, or
the output layer, consists of 10 neurons. Layer 1 accepts 196
input values corresponding to the values of the 14x14
grayscale image. The bias vector and weight matrix are also
fed to the layer. The 16 neurons in layer 1 receive their
corresponding biases and weights from the bias vector and
weights matrix. A multiplexor chooses one activation to
feed to all neurons. The layer outputs the activations from
the neurons and a "v" signal to indicate the completion of
the layer computation.



Figure 5: General Layer Block Diagram

C. FSM
As with most timing-based VHDL projects an FSM is

required to initialize the order and operations of the code as
a whole. This project is no different owing to an FSM to
count and keep track of the neuron processes. While this
FSM is simple in design (Figure 6) it has an important role
in enabling the initial registers that move the inputs into the
neurons as well as initializing the neurons to do their
processes.

Figure 6: Block Diagram for the FSM

In S1, the circuit waits for the start signal to go high.
Upon the assertion of start, the activations from the previous
layer are captured onto the registers within the current layer.

The accumulator registers are enabled for all neurons and
the bias is selected to add to the running sum. The circuit
then enters S2. During S2 the accumulator registers are
enabled and the neuron selector, k, is incremented iterating
through all the activations received. In the last iteration, the
FSM asserts d_v to be high which is fed to a flip-flop within
the layer. The v signal, the output of the flip-flop, indicates
the completion of the layer computation.

D. Comparator
The output neuron with the highest activation value

determines which handwritten digit, the neural network
"thinks" the input image depicts. The comparator circuit
distinguishes which neuron has the highest activation. The
comparator circuit multiplexes through each of the output
activations to compare with the current highest activation
encountered held in the max register. The comparator block
will output the greater of the two inputs and a Found Bigger
Value flag. FBV is raised when the input from the MUX is
greater than the input from the max register. When FBV is
raised, the index register captures the index of the current
neuron. The circuit outputs a done signal when the greatest
neuron's index has been determined. The block diagram is
depicted in Figure 7 and the FSM is depicted in Figure 8.

Figure 7: Output Activations Comparator Block Diagram



Figure 8: Comparator FSM

The FSM for the comparator begins in S1 with clearing
registers and waiting for a start signal. Once started, the
circuit enters S2 where the counter and max registers are
always enabled. If a larger value is determined from the
output neurons than is currently stored in the max register,
the index register updates to reflect that determined neuron.
Once all 10 neurons have been evaluated, the FSM
transitions to S3 where it sends the done signal and awaits
start reset.

E. Serializer and Seven Segment Display
For a visual indication of the ANN’s function the index

signal from the comparator is fed to a block that transforms
a BCD number to signals that control a seven-segment
display. This file was provided via Dr. Llamocca’s website.
Only one seven-segment display is required to output the
ANN’s guess.

F. Inputting Text Files
Incorporating the images (activation inputs),

weights, and biases via synthesis was done using an impure
function in Vivado. This function essentially reads each line
of a text file and then stores it as a constant value within the
FPGA. The activation inputs were synthesized in the ANN
top file, while the weights and biases for each layer were
synthesized in their corresponding layer file. If different
activation inputs, weights, or biases needed to be modified,
this could be done easily by renaming the parameter of the
impure function wherever it is called in the ANN top file or
layer file.

III. EXPERIMENTAL SETUP
Before the ANN was implemented using Vivado, the

ANN was tested utilizing MATLAB. This was done to gain

an understanding of the ANN and what was to be built in
hardware. As mentioned in the report, the ANN was trained
prior to implementation “using a downsampled version
(14x14 images) of the 60,000 element MNIST database”
[1]. The ANN test in MATLAB resulted in an accuracy of
92.87%.

Once the neural network was built in Vivado, the neural
network was then simulated in Vivado using a test bench.
The test bench initiates the control circuit of the top file. It is
not necessary to populate the input values in the test bench
as they are set during synthesis. Behavioral simulations
were conducted for ten input files to test each possible digit.

IV. RESULTS

The operation of the comparator is described in the
waveform shown in Figure 9.

Figure 9: Comparator Behavioral Simulation

The simulation results show correct identification of the
index as well as correct updating of the registers and counter
signals.

The operation of the ANN is shown via behavioral
simulation in Figure 10.

Figure 10: ANN top File Behavioral Simulation.

The ANN simulation in Figure 10 received a 14x14
grayscale image of a handwritten 9; the amount of time the
ANN took to calculate the guess can be found by taking the
difference between the ‘done’ signal and ‘s’ signal (yellow
signal). The total time between the ‘s’ signal assertion and



the done signal assertion took approximately 2.23
microseconds. Layer 1 takes 196 clock cycles to iterate
through all the inputs, layer 2 takes 16 clock cycles, and the
comparator takes 10 clock cycles. This sums to 2.23
microseconds overall given a 100MHz clock and an extra
cycle for initiation. The comparator sent the index value 9
(blue signal) to the index capture register, which means the
ANN correctly guessed the input image to be a 9. The a_l_j
value in Figure 10 (brown signal) represents the output of
Layer 2, where the largest value is the ANN’s guess of what
the input image is. The a_l_1_k value (pink signal)
represents the 14x14 image that was input to the ANN.

Figure 11: Layer 2 Behavioral Simulation

The behavior of a layer is shown in Figure 11. The pink
signal records the inputs to Layer 2 consisting of 16 input
activations. In the first state, the biases are added to the
running sums held in the accumulator registers. In the
second state, the neuron selector iterates through all 16 input
activations to be added to the running sums. With each
iteration of the neuron selector, the activations for neurons
in Layer 2 are updated which is why the blue signal is
changing throughout. Once all values are summed, the v
signal is issued, and the layer returns to state 1.

All ten test files corresponding to each of the possible
digits produced accurate outputs in behavioral simulation.
However, when comparing the output activations of the
second layer in simulation to the expected activations
calculated in MATLAB, the nonzero values were at times
about ±50 off from the MATLAB obtained values. This was
the case for all test files. The minutia of inaccurate
activation values ultimately did not impact the ability to
correctly determine the depicted digit for all test files 0
through 9. Perhaps the inaccuracy is due to the fixed point
math in our neural network. The complexity of design
increases with every bit of precision though. If the
discrepancy is not due to the difference in number systems
used in MATLAB and the number systems in our
FPGA-based design, it may be a slight error in the generated
text files for synthesis. Ultimately, we do not know the
source of the inaccuracies.

When flashed onto the board the neural network only
worked for test files 1, 9, and 8 consistently. We are unsure
as to why these files work and why the others do not. The
other files would either produce the incorrect value or
flicker an incorrect result momentarily before resetting to 0
on the display. Possible reasons for the malfunction were
considered. The first considered reason was the bouncing of
the button used to initiate the ANN and too long of a start
pulse. Despite implementing a debounce and pulse detector
block, the ANN still did not work. Second, the

combinational delay was guessed to be too long for a
100MHz clock. Attempts to conduct a functional timing
simulation were made but the results ultimately were never
fully investigated. The low accuracy of the ANN when
implemented on the board is concerning and the cause is
still to be determined.

V. CONCLUSIONS

In conclusion, this project successfully demonstrates the
implementation of a handwritten digit recognition system
using FPGA-based Artificial Neural Networks (ANNs). The
parameterization of the VHDL design and integration of
ReLU activation functions allowed for efficient resource
utilization within FPGA constraints. Our Finite State
Machines (FSMs) managed control and timing, ensuring
accurate computations, while pre-computed activations,
weights, and biases from MATLAB facilitated seamless
integration into the FPGA design. If this project were to be
expanded further the need for a way to intake images and
have it automatically compute the fixed point values above
would be the first problem to resolve. This would allow for
a seamless integration and general implementation of any
image of a digit we could feed it to give us an output. In a
future revision, we might also try to use a bigger board as
the current 100T board is not big enough to house a
pipelined neutral network. This would allow for a more
general application of image recognition and a more
efficient neural network. In the end, this project as a whole
is a strong representation of neural networks in the VHDL
and FPGA space and hopefully will inspire further
experimentation for future projects.

VI. REFERENCES

[1] D. Llamocca, "Fixed-point implementations for feed-forward
artificial neural networks", Integration, vol. 92, pp. 1-14,
September 2023, ISSN 0167-9260, doi:
10.1016/j.vlsi.2023.04.002. [Online].

[2] Llamoca, D. (2013). VHDL coding for fpgas. Retrieved April
18, 2024, from
https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.htm
l


