
K-Line Communication

List of Authors (Adam Jesse, Trey Plichta, Jacob Alam, Ruger Stellberger)
Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: ajesse@oakland.edu, treyplichta@oakland.edu, jalam2@oakland.edu, rstellberger@oakland.edu

Abstract—The purpose of this document is to describe the
process of achieving K-line communication between the Nexys
A7 FPGA and a 9141 OBD ECU simulator board designed by
Ozen Elektronik. The design, methodology, setup, results and
conclusions will be drafted along with supporting visuals of
components and software diagrams.
keywords - FSM, ECU, LED

I. INTRODUCTION
This project uses the Nexys A7 FPGA board and the ISO
9141-2 OBD ECU simulator board. The purpose is to
initialize a communication session between the two boards
and then request and display select data from the ECU
simulator on Nexys Board. The ECU simulator provides
signals that will be requested and received using the Nexys
A7 board. A simple high level block diagram is provided
below that covers the 4 circuits of this project and how they
are intertwined.

Figure 1. Digital Circuit Overview

II. METHODOLOGY

A. Initialization Process
The first step to allow the Nexys A7 FPGA to

communicate with the ECU simulator board is to initialize a
communication session. This is done through serial
communication at a baud rate of 5. A single wire
communication protocol, K-line communication, is used.
This process requires a series of steps that include sending
specific packets at different bit speeds. Once a session is
initialized, a green LED will turn on indicating a successful
session has been initialized.

According to the document [1], to begin the initialization
process, the simulation board requires an address of 33 at
precisely 5 bits per second. The total time needed to transmit
this message will last roughly two seconds. The simulator
will then respond with a synchronization byte of 55 to
inform the user of the new baud rate of 10,400 bits per
second. The simulator will then wait between 5ms to 20ms
for the user to set the new baud rate with the Nexys A7 and
follow up with two key bytes. After the key bytes have been
sent, the user will then send an inverted byte number 2 after
waiting for 25 to 50ms. After this is completed, the
simulation board will then invert the address value 33 and
send it back to the user as a ready to communicate signal.

The requirements to initialize the emulator board via the
Nexys require a 3.3V to 12V amplifier circuit, a 12V to 3.3V
voltage divider circuit, a finite state machine, and several
software components implemented via the FPGA board.
First, the 12V to 3.3V down converter was used to set the
voltage levels of the K-line to acceptable GPIO voltage
levels for the Nexys A7. The Nexys A7 will accept a
maximum of 3.3V through GPIO with any levels exceeding
this value to cause damage to the FPGA board.

The next requirements for the emulator initialization
process are the components programmed in vhdl and
implemented on the Nexys A7. The components used in the
initialization process include: shift registers, registers, a
falling edge detector, counters, comparator, and a finite state
machine. The purpose of these components are as follows:
the shift registers were used to output data from the Nexys,
registers were used in this design to hold and store data
when necessary, the falling edge detector was used to detect
the start bits of incoming messages, counters were used to
determine the waiting period to send data packets and set
varying baud rates, a comparator to verify the transmitted
bits are correct,and the state machine was used as a control
circuit to complete the necessary requirements in correct
sequence.

mailto:ajesse@oakland.edu
mailto:jalam2@oakland.edu
mailto:rstellberger@oakland.edu


Figure 2. Initialization Circuit Diagram

The finite state machine is by far the most complex
component used by the Nexys A7 during the initialization
process. This component contained 19 states to send data
packets at their required time interval and determine what
values to transmit to the emulator. Since the FSM acted as a
control circuit, it determined when to activate and utilize the
other components detailed in the initialization process. The
FSM was in direct control of the counters and the right shift
register. The counters were used to time the output of data,
allowing the FSM to control the output of data packets. The
FSM also utilized the shift register to shift data bits out of
the Nexys and to the Emulator board. Due to the size of the
FSM, an ASM diagram is provided in Appendix I.

The 19 states created in the finite state machine allow for
the initialization steps to occur in proper sequence. State one
waits for the button on the Nexys to be enabled to start the
upcoming sequence of events. State two waits for the user to
hit a button to start the initialization process. It also loads
0xCC into the shift register before moving to state three.
Note that this 0xCC will eventually be inverted before being
shifted out. State three signals the start bit of the data packet
and signals the counter component to count to 200ms. After
this time has passed, the FSM reaches state four where it
will shift the message in the timing diagram with each bit
lasting 200 ms.

Figure 3. Message Timing Diagram

FSM state 5 sends out a high stop bit for 200 ms. Next, the
FSM waits for a response from the ECU simulator board. The
response is detected with the falling edge detector in state 6.
When reading data from the ECU simulator board, it is
desired to read a steady value from the middle of the

transmission time. Therefore, state 7 uses a counter to delay
to the middle of the start bit. State 8 is where the data byte is
shifted into the right-shift register. Every time zC1 is high,
which means the respective counter has reached 9614, a data
bit is shifted into the register. This happens until zQ hits a
maximum value of 7, so this process sees a byte shifted into
the right shift register. State 9 sends a stop bit out onto the
k-line. According to the ISO 9141-2 5 Baud Initialization
Process, the ECU simulator will need to send three bytes to
the Nexsy board; 0x55, 0x08, 0x08. The last two bytes are the
same. Therefore, instead of using additional states, a
comparator was used to detect the last two bytes being the
same before the process could proceed. State 10 sees this
comparator in action with the FSM returning to state 6 to wait
for another falling edge and shift in another data byte when
the data in the shift register and storage register are unequal.
Once 0x08 is successfully compared to 0x08, the FSM
proceeds to state 11 which is a delay of 30 ms achieved
through a 0 to 2,999,999 counter. State 12 sees the Nexys
board sending a start bit out onto the k-line. According to the
ISO 9141-2 5 Baud Initialization Process, we must now send
the 0x08 back to the board, but inverted. Therefore, the 0x08
that is still stored in the right shift register is inverted and sent
back out onto the k-line at 10.4 kbps using a 0 to 9614
counter (duration of each bit) and a 0 to 7 counter (number of
bits) in state 13. State 14 sends a stop bit out onto the k-line.
Finally, the ECU simulator sends one final message to the
Nexys board. This occurs in states 15 to 18 which are a direct
mirror of states 6 to 9. At this point, the Nexys has reached
state 19 in the FSM Init component and is ready to continue
on the next process of reading data using PIDs. It informs the
system that the initialization process is complete by setting
signal s_PID to 1. The FSM rests in this state until resetn is
activated. Additionally, the emulator is expected to activate
the LED signifying the activation confirmation.
A few things to note in the initialization process. The first
message sent from Nexys to ECU simulator in states 3 to 5 is
the only message sent at a 5 baud rate rate. Every other
message whether sent from Nexys to ECU simulator or vice
versa is sent at 10.4 kbps. Additionally, the k-line idles high.
Therefore, all delay and rest states see the k-line set to 1.

B. Reading Data
To retrieve data from the ECU simulator board, a

request message must be transmitted, which must follow the
specifications outlined in the ISO 9141-2 standard. This
request message consists of header bytes that contain the
format byte, the target byte, and the source byte, followed
by a data length code byte that specifies the number of data
bytes to be sent. The subsequent data bytes can be up to a
maximum of 7, and they contain the PID of the signal.
Lastly, a checksum byte is sent to ensure data integrity.

Once the ECU simulator receives a correct request
message, it will send a response that contains specific
information about the requested signal. For instance, if a
PID indicating ECT is sent, the response data byte will
contain the hexadecimal value of the engine coolant
temperature. In this project, the ECU simulator is constantly
requested for values of ECT, VSS, O2, and Time since



power up, which are then displayed on the 7 segment
display of the Nexys A7 board. The user can select which
reading to view using switches 1 and 2 on the board - 00 for
ECT, 01 for VSS, 10 for O2, and 11 for time since startup.

To implement this process, the circuit diagram in Figure
3 depicts the components involved. A multiplexer is used to
load the appropriate shift register with preloaded request
messages. The selection of this multiplexer is controlled by
a counter that increments each cycle of the FSM. The
request message is shifted out one bit at a time at a baud
rate of 10,400. Once the request is sent and a leading 0 is
detected, the FSM reads the response from the simulator by
shifting each bit into a register. The data byte of the
response is obtained from this register, and its hexadecimal
value corresponds to the actual value of the signal. This
value is then passed to the 7 segment serializer and
displayed.

Figure 3. Reading Data Circuit Diagram

The FSM_PID, shown in Figure 4, controls the entire circuit.
This is how the request is sent at the correct baud rate and how
the response is received. This FSM had 10 states that repeat
about every half a second. The first state would wait for a
signal that came from the initialization FSM that would only
become high after a successful initialization sequence was
completed. States 2 through 5 were responsible for sending the
start and stop bit along with each individual byte. Once all 6
bytes were sent, states 6 and 7 waited for the falling edge
indicating that the ECU simulator had sent its start bit. Then it
is delayed to the middle of this start bit. State 8 is where the
reading process begins and the response is shifted into the
register. Depending on the sel_PID signal, the data byte is
passed to 1 of the 4 different registers and the rest is ignored
because it is not needed. Once here, the data will be passed to
the 7 segment serializer to be displayed.

Figure 4. Reading Data Control Circuit

C. 7-Segment Serializer
In figure 5, the FSM and attached components are used to
show all of the signals on separate 7-segment displays to the
human eye simultaneously by cycling through every
1ms(0.5ms may be necessary). The state diagram for the
aforementioned FSM is shown in figure 6. The FSM
increases its state every time E is 1, which as the diagram
shows, will occur every 0.001s (1ms). Hence, ‘s’ will
increase every 1ms, thus switching what data value to fetch
from the multiplexor each millisecond. The ‘s’ selector also
selects which 7-segment display to turn on at a given
moment since only one display can be utilized at a time
because of hardware limitations. Hence why the 1ms delay
is present to let the board switch displays constantly so it is
only utilizing one display at a time while simultaneously
seeming as though the image is still to the human eye thanks
to the low delay. Note: These components were not a focal
point of the project. Therefore, VHDL code and diagrams
were taken directly from notes and online resource website
[2].



Figure 5. 7-Segment Serializer Circuit [2]

Figure 6. 7-Segment Serializer FSM [2]

D. Falling Edge Detector
Both the Initialization FSM and the FSM responsible for
reading data utilized a common falling edge detector circuit in
order to begin reading data from the emulator board. After
receiving an alert from the Falling Edge Detector circuits,
these control FSMs could proceed to the next state. The FSM
responsible for detecting the falling edge of input from the
k-line is shown in figure 7.

Figure 7. Falling Edge Detector FSM

III. EXPERIMENTAL SETUP
The setup necessary to set the connection between the

Nexys and the ISO 9141 OBD ECU simulator board
required a series of several components. The project
required the utilization of Pmod headers on the Nexys A7
FPGA, the ODB connector terminal of the emulator board,
a 12V to 3.3V down converter, and an OBD connector. The
Nexys Pmod headers JA 1 and 2 were utilized as K line
connectors in and out respectively. The OBD terminal pins
used in this system were the K line pin 7, 12V pin 12 and
GND pin 5. The final component needed in the system
setup is a 12V to 3.3V down/step converter. The Nexys
requires an input of 3.3V for communication while the
emulator board needs 12V. To allow the boards to
communicate, a regulator is needed to control the power
level input into each board. The Nexys was then powered
using the micro usb terminal utilizing a 5V input and the
emulator required a 12V power supply. Once the setup is
complete, the system is ready for use.

IV. RESULTS
After much debugging, a functioning project was

observed. Links to videos of that project are given below.
Video DEMO #1
Video DEMO #2

One problem with the outcome of the project is the

https://drive.google.com/file/d/1ucz70qY8AWBECy90T03SopZuhJLZHjLx/view?usp=sharing
https://drive.google.com/file/d/1U1Yvd70Xf72ilixlRB_OWHYbosDx_9pd/view?usp=sharing


tediousness of the setup. Our FSMs were designed to only
handle expected outcomes. Therefore, if any data was
corrupted, the FSMs will find themselves stuck in a state
and the ECU simulator will time out with 5 seconds of
inactivity on the k-line. We found that corrupted data did
often exist due to the use of physical circuitry in our
amplifier/voltage divider circuit. Any movement to these
components could result in the failure of communication.
Therefore, our circuit was observed to have communication
sessions as short as 20 seconds and as long as 3 minutes
when, in theory, they should have lasted forever.

Another challenge of the entire project was the debugging
process. A testbench was used to ensure the expected
behavior of the initialization process. However, since the first
10 bits were sent at a 5 baud rate, this process took over 2
seconds and the behavioral simulation took over 10 minutes
to run. A waveform is not included in this report as it would
be unreadable without a zoom function.

This project often turned from a design, testing, and
validation process to a research project. Finding data on ISO
9141-2 5 Baud Init proved to be a challenging task. Some
examples of roadblocks encountered include start and stop
bits being sent between each data byte when
sending/receiving requests with no delay besides these two
bits; setting the k-line high during any idle state of an FSM;
and configuring the correct way to send data out. These were
all tricky tasks as information on the web on ISO 9141-2 5
baud INIT is limited and the group had limited automotive
communication knowledge before the project. Overall, the
group found the standard to be very “UARTish”, a topic
covered in large detail during the course.

CONCLUSIONS
In conclusion, this project aimed to initialize a

communication session between the Nexys A7 FPGA board
and the ISO 9141 OBD ECU simulator board, and to
request and display select data from the ECU simulator on
the Nexys board. This was achieved through serial
communication at a baud rate of 5 using a single wire
communication protocol, K-line communication. The
project required a 3.3V to 12V amplifier and 12V to 3.3V
divider circuit, a finite state machine, and several software
components implemented via the FPGA board. The finite
state machine was the most complex component and
contained 19 states to send data packets at their required
time interval and determine what values to transmit to the
emulator. The project successfully implemented the 5 Baud
Initialization Process as described in the ISO 9141-2
standard, and allowed for data to be requested and displayed
on the Nexys board. Overall, the project achieved its
objectives and successfully demonstrated the use of the
Nexys A7 and ISO 9141 OBD ECU simulator boards for
automotive applications.

REFERENCES

[1] B. Gruszczynski, “K-line
Communication Description,” Nov.
2009. Accessed: Apr. 12, 2023.
[Online]. Available:
https://www.obdclearinghouse.com/Fi
les/viewFile?fileID=1380

[2] Llamocca, Daniel. VHDL Coding
for Fpgas, Oakland University.
https://www.secs.oakland.edu/~llamoc
ca/VHDLforFPGAs.html.

https://www.obdclearinghouse.com/Files/viewFile?fileID=1380
https://www.obdclearinghouse.com/Files/viewFile?fileID=1380


APPENDIX I (INIT FSM)



APPENDIX II (Reading FSM)


