
VGA Digital Pong Table Tennis Game

List of Authors (Sara Jamu, Everardo Mejia, Armela Gjokaj, and Brandon Brennan)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: sjamu@oakland.edu, emejia@oakland.edu, armelagjokaj@oakland.edu, bbrennan@oakland.edu

Abstract - The project consists of the design and simulation of a

classic Pong game, where either two people play against each

other, or one plays against a computer simulation. This is a 2D

game, which is played by passing the ball until one of the players

scores. Once this happens, a new ball will be generated, and the

game will restart. The goal of this project is to develop a Pong

game by integrating software into hardware and understanding

different methods of communication with external peripherals.

Introduction- The objective of this project is to design

a Pong game displayed using a PC monitor. This design will

be accomplished utilizing the VHDL hardware description

language on the Nexys 4 DDR FPGA board. The purpose of

the game is to pass the ball from one player to the other until

one of them scores. The user will be able to use SW0 when

he wants to pause the game, or the CPU reset to restart the

match. The primary external device to be utilized will be a

keyboard which is used by each user to move the paddle.

Also, we used the buttons of the board to control the paddle

of the user. A VGA controller will create communication

between the keyboard and the FPGA board, and the game will

be displayed either through a VGA monitor. Based on topics

we learned in class; we will be able to combine the use of an

FPGA board with a keyboard and display screen to output a

fun game.

I. METHODOLOGY

Design Methodology
 The goal of this project is to develop a game of pong
in VHDL using Vivado software and the Nexys4 DDR board.
In comparison to current versions of Pong, this version of
pong would only feature a PVP mode using a keyboard to
receive the inputs for Player 1 and Player 2. Respectively,
Player 1 will control the placement of their paddle using the
w and s keys and Player 2 using the up and down buttons on
the FPGA board. To develop this code, the group referenced
Professor Hanna’s previous work with VGAs and Sprite
development regarding FPGA boards [5]. Mainly, the team
referenced multiple different texts written by Darrin E. Hanna
and Richard E. Haskel when first creating this project [3]. The
team also referenced Professor Hanna’s academic work from
previous semesters to get a better understanding of how this
project could be completed [4]. A good example of the type
of sprite/VGA development referenced for this project is
shown below.

To begin with, the sprites for Players 1,2, the dotted
center line, and the Ball are all created simply using Microsoft
Paint and turned into pixelated images. Here, the pixel sizing
was defined in MS paint when creating the image (player
1&2: 100x40, ball: 30x30, center line: 500x10), before turning
it into a sprite. Then, these paint images are converted into
machine code by running MATLAB scripts that can describe
the colors of these images at each pixel. Within the code all
images had a 12-bit output (= 3 hex values) in the .coe
(coefficient files) to describe a pixel's color code so that it can
then be used within Vivado to display the sprites for Player 1
and 2’s paddles, the dotted line to separate the players, and the
ball itself onto the VGA monitor connected to the Nexys4
DDR FPGA board.
 Overall, the Sprites are controlled by two separate
Finite State Machines. One FSM is used to control player one
and player two’s paddles, shown below.

mailto:sjamu@oakland.edu
mailto:emejia@oakland.edu
mailto:armelagjokaj@oakland.edu
mailto:bbrennan@oakland.edu

With this FSM, player one can move their paddle up with the
left button (BTNL) and down with the down button (BTND).
Player two is then able to move up with the up button (BTNU)
or the up key (w) on the keyboard and down with the right btn
(BTNR) or the down key (s) on the keyboard. Each of these
paddles are connected to the buttons located on the FPGA
board. The paddles can also be controlled using an attachable
keyboard Peripheral that is plugged into the board as well.

The second FSM is what controls the algorithm of the ball
movement and bouncing of the ball, also shown below.

The beginning of the FSM is controlled by the start switch of
the game. If the switch is flipped on, then the game will start
and therefore start running through the game logic.
Otherwise, if the switch is flipped again the game will be
paused and the ball will immediately stop moving. The
beginning of the game gives the ball the exact coordinates of
where to be on the screen (x = 305, y = 225) and then
increments the count. Then, the ball movement is initialized
to move to the left side of the screen and move a certain
number of pixels up and to the left and increment the count.
The FSM also has the ball move down and to the left
depending on the value of the count variable. The FSM above
will also control the AI/algorithm of the ball. The FSM tells
the ball to restart the ball’s position on the screen and the count
variable if the ball goes out of bounds on the screen. If the
ball collides with the surface of either paddle, then it will
bounce off the paddle to the other side of the screen. Once
one of the players loses a match, then the number of matches
played will be increased and the ball will restart its place in
the middle of the screen.

 Shown below is a block diagram of the overall
design of the VGA Pong board. Shown within the diagram is
a counter that receives information from the game logic and
displays the number of games played by the users through a
decoder on the FPGA boards seven segment display.

 The game logic behind pong is ran mainly using an
FSM that will update the state of the game and update the win
counter for each player, the counter will also display the score
for each player using the 7-segment displays available on the
Nexys board (in the format “P#: (score)). The FSM will accept
inputs from the reset and start (BTNC) buttons to begin the
game and set the location of the ball dependent on the state of
the game. The FSM is also receiving input from the score
counter to determine two things. One, which side of the screen
the ball will start and two, when the game ends, which will be
programmed to change the state of the game to “Game Over”
when one of the players reaches a score of 9. The game logic
is structured as shown below.

The final product is similar to the image below.

II. EXPERIMENTAL SETUP – HARDWARE SETUP

For the setup of this project, we used the following

equipment:

• Vivado 2021.1 Software

• Nexys4 DDR Board

o CPU reset button.

o 1 switch

o Buttons

o 7 Segment Display

o 2 LEDs for w key press vs s key press

• Keyboard

• VGA Display monitor

The diagram above is a representation of the

integration of the hardware setup for the project. For the

implementation of the game, we used a VHDL code

that implements a keyboard that is used to control the

game. The player controls the game from 2 keys, W, S

which control the paddle of one of the users. CPU reset

will be used to restart the game. Also, we used a switch

from our FPGA board, that was used to pause or start

the game. The other opponent that we used was the

buttons of the FPGA board to control the other paddle

of the game. The losing occurs when a player can’t

catch the ball and the ball passes and touches the

respective edge of the screen, so the other player gains

a point. The score of the player and his opponent will

be shown on the 7-segment display. The game was

displayed on the VGA monitor that gets all the

information directly from the FPGA board.

III. RESULTS

The result of this project is a working multiplayer

game of pong using the Nexys4 DDR FPGA Board. The

user can play the game using the keyboard and the

buttons and watch it on the VGA Monitor. We were able

to get a working keyboard that would change the lights

of the LED on the FPGA board based on the key that we

pressed which was either W or S. However, we were not

able to implement it with the rest of the project, so the

user only used the buttons of the FPGA board.

The figures above are a representation of the VGA

display that we were able to get when running the

project. The ball bounces at a 45-degree angle and it

bounces from one paddle to the other. The seven-

segment display shows the points the player gets, and it

is incremented each time one of the players scores.

Improvements: Even though we had a working

project, there are a few things that we could improve but

weren’t able to because of time constraint. One of them

is to add a trained AI ball. Also, we could add levels once

a player reaches a certain score. For example, after one

player reaches 9 points, as the maximum points we had

for one player to get, it will change the level of the game

and the background after each level changes. We could

also add limits to the paddles, so they won’t go beyond

the screen display.

CONCLUSIONS

There are several challenges that are to be expected

when creating this FPGA project. Our group had a few

days to work on all the project files and integrate them

together. When it comes to FPGA projects (or any

project for that matter), timing constraints must be met

for this project to work correctly. This means that each

of us within this group must be able to allocate our time

properly to fully complete this project and fully

encapsulate the scope of what we wish to achieve with

this project. Each person in our group works outside of

school, with two students also involved in senior design

so it was important to manage our time constraints

properly.

Another challenge that faced during the project was

working with sprites and VGA as it wasn’t a topic that

we learned in class. FPGA’s have limited resources

regarding logic cells, routing resources, and memory

blocks. So, it was challenging for our group to create a

complex design within the available resources. Our

group did a lot of research on the internet, in school

resources, and from other students who are skilled in

VHDL regarding implementing this project, mainly the

sprite work. Some of the sprite work that will be used in

the project is not currently covered in the materials from

our class lectures so our group must ask for assistance

and do our research to figure out how to fully implement

this sprite work into our project.

The main challenge was working with the sprites,

moving, and controlling their addresses in

correspondence to address of the AI ball. Because the

ball is not an AI trained module, it doesn’t bounce at all

angles. Also, a challenge was implementing a

multiplayer keyboard which was then replaced by

buttons from the FPGA board and controlled by the user.

Overall, the project was very fun to make. Even

though it had its challenges and being time consuming,

we were able to combine what we learned during this

semester with our research and what we learned about

sprites to create a fun game.

REFERENCES

[1] Daniel Llamocca / Oakland University, VHDL
coding for fpgas. [Online]. Available:
https://www.secs.oakland.edu/~llamocca/VHDLfor
FPGAs.html [Accessed: 20-Mar-2023]

[2] Xilinx, “Vivado ML Overview,” Xilinx.
[Online]. Available:
https://www.xilinx.com/products/design-
tools/vivado.html. [Accessed: 20-Mar-2023]

[3] XHaskell, Richard E., and Darrin M. Hanna.
Learning by Example Using VHDL: Advanced
Digital Design with a Nexys 2 FPGA Board. LBE
Books, 2008. [Accessed: 22-Apr-2023]

[4] Haskell, Richard E., and Darrin M. Hanna.
Digital Design Using Digilent FPGA Boards:
VHDL/Vivado Edition. LBE Books, 2018.
[Accessed: 22-Apr-2023]

[5] HASKELL, RICHARD EDMUND. Advanced
Digital Design Using DIGILENT FPGA Boards:
VHDL/VGA Graphics Examples. LBE, 2016.
[Accessed: 22-Apr-2023]

https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

