
Flappy Bird in VHDL

List of Authors (Alex Rice, Brikena Dulaj, Peyton Schmid, Roman Hryntsiv)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: alexrice@oakland.edu, brikenadulaj@oakland.edu, peytonschmid@oakland.edu, rhryntsiv@oakland.edu

Abstract— Flappy Bird is a mobile game developed by
Vietnamese video game artist and programmer Dong
Nguyen under his game development company, Gears.
This project is a recreation of the game using a Nexys
A7-50T FPGA board programmed using VHDL code, a
VGA display, a 7-segment display, and a PS-2 keyboard.

I. Introduction

Playing video games brings children and adults alike great
joy. A game can serve as a place to escape from the
struggles of everyday life, or in the case of mobile games, a
fun way to pass the time while waiting in line at
somewhere like the grocery store. The value a video game
can bring to life served as the motivation for making this
project.

Flappy Bird is a simple, yet highly addictive mobile game
that was released in 2013. The objective of the game is to
gain as many points as possible. Due to its simplicity and
the competition that it created, the game took the world by
storm. In the game, the user taps the screen to lift Flappy
the bird as it travels through sets of pipes above and below
it. Flappy is continuously falling, as the user input mimics
the flapping of a bird. If the screen is not tapped, the Flappy
sprite plummets, which in turn causes the game to end.
With each pipe that the user is able to pass, a point is
gained towards their score. The game continues until the
user makes an error and Flappy collides with one of the
pipes. At this point, the game ends and the user can start
over again to try to beat their high score.

The goal of this project was to recreate Flappy Bird using
VHDL code and the NEXYS A7-50T FPGA board. The
project required using knowledge gained throughout the
course of the semester such as FSM design, embedded
counters, and how to interface with various external I/O
peripherals. To implement the screen control of the original
game, a PS-2 keyboard was used. To handle scorekeeping,
an on-board 7-segment display was used. A VGA display
was used to project the game. Extensive research needed to
be done on VGA protocol, as this topic was not covered in
class. .

II. Methodology

A. Top File

Figure 1. System Block Diagram

To facilitate cleaner design and simplify debugging, the
project focused on interconnecting existing program
blocks. In a top file, all of the VHDL program blocks were
interconnected and port-mapped. The top file includes all
system signals, including the PS-2 Keyboard, the
7-Segment display, and the VGA display block. These
blocks are then connected accordingly. Figure 1 depicts an
overview of this file. It also includes a finite-state machine
(FSM) that is responsible for actually controlling the flow
of the game as the user plays. A FSM defines “states” of a
program that are entered and exited based on set signal
values. This further simplifies program development by
defining transitions and signal values based on other signal
values. Complicated sequential processes are often
optimized by using an FSM to dictate program execution.

The FSM moves throughout the different states of the game
and reacts accordingly to signal values generated by the
system or received from external input. The FSM places the
screen images for the pipes and the bird onto the VGA
display and controls their movement during the game. It is

also responsible for recognizing collisions between the bird
character and the pipe obstacles. The FSM then either
increases the score and continues the game, or ends the
game upon collision. It also coordinates the timing of the
game by only switching between states on the rising edge
of the input clock. Figure 2 below depicts this FSM.

Figure 2. Main FSM

The game begins by placing the bird and obstacles on the
screen in the “default” starting position. This is the first
state of the game, where the program is idle until the user
presses the spacebar to enter the game. Once the spacebar
is pressed, the game begins. This gameplay state is the
second state of the game, and includes a bulk of the
program.

To understand the gameplay state, the design of the game
must be understood. The original game moved randomly
generated pipes on the right side of the screen, and moved
them linearly towards the left side. The bird only moved
vertically to avoid these pipes. In this implementation, the
pipes remain stationary, while the bird travels across the
screen.

During the gameplay state, the bird’s address is
automatically incremented in both the x and y directions by
25 and 50 pixels every clock cycle, respectively. If the user
presses the spacebar, the y direction is decremented by 50
pixels, making the bird go up instead of down. If a collision
occurs, meaning that the bird position overlaps with the
pipe obstacle, the game shifts to the “game over” state. If a
collision does not occur, the program checks to see if the
bird passed an obstacle. If so, the score is incremented.
After this, the program returns to the beginning of the
gameplay state. In the third “game over state,” the program
is again idle until the user hits the spacebar to play the
game again.

B. VGA

The original plan for the project included using MATLAB
to convert an image into a binary text file. The images that
were going to be used are shown in Figure 3 below.

Figure 3. Game Design with RAM Implementation

This file would be stored in a RAM (random access
memory) block to implement the VGA images of the pipe
obstacles, a background and Flappy. Figure 4 below
displays the block diagram of this setup. However, this was
not possible to design adequately in the time allotted
(covered in detail in the results section). Instead, a more
simple VGA display controller, shown in Figure 5, was
used to manually create the scenery, obstacles, and sprite in
the available 640 by 480 pixel space. Embedded in both the
VGA control block is the display block, shown in Figure 6
below. This block generates the clock tick of the VGA
display and cycles through the coordinates of the display.

Figure 4. VGA Control Block with RAM

Figure 5. VGA Control Block Without RAM

Figure 6. VGA Display Block

To simplify the project during design all images were
originally created as rectangles and using only two colors.
Figure 7 below shows the original design of the game
without the incorporation of RAM.

Figure 7. Original Game Design Without RAM

Each pipe was created by defining a space on the screen
using the variables HC and VC. These ranges then had
RGB outputs set to green instead of the background color.
The color of Flappy was defined similarly, except using
red instead of green. The main FSM was then used to
accomplish the moving of the images and facilitate
gameplay. In the initial state, the coordinates are set so
they are suspended in the top left corner waiting for the
user to start the game. When the user presses space the
game begins and moving of the VGA image starts. An
embedded counter was used within the main FSM to move
between states every second where the coordinates of
Flappy move down and to the right with each state change.
If the user then presses the up key on the PS-2, Flappy’s
coordinates are moved up to avoid the pipes on the bottom
of the screen.

To track when collisions occur, ‘sensitive’ areas of the
VGA field corresponding to pipe placement were defined.
If the position of the bird is ever in the same coordinates as
one of the pipes, a collision has occurred, causing the
program to enter the “game over” state. In this state, the
game ends and the display flashes “GAME OVER” in
black to alert the user. Flappy will then be placed back in
the start position of the first state until the spacebar on the
PS-2 keyboard is pressed. Once this was all created using
the simple blocks, a better bird was implemented by using
pixel art and more specific coordinates. This updated
design is shown in Figure 8 below. .

Figure 8. Final Design of Game

C. PS-2 Keyboard

To implement the user controls, a PS-2 keyboard was used.
PS-2 (Personal System 2) refers to a hardware interface
used to connect a keyboard or mouse to a PC. A PS/2 port
has a bidirectional, synchronous serial channel. Although
this protocol is bidirectional, data transmission favors the
device over the host. It transmits data from a 6-pin
Mini-DIN port, displayed in Figure 9 below. The device
sends a byte in a serial frame on the data line as the clock
toggles for each bit. The host controls the clock
transmission, which gives it overall control, although it
does not normally perform the majority of data
transmission. If the host requires communication to be
stopped, it pulls the clock signal low.

Figure 9. 6-pin Mini-DIN Connection of PS/2 Devices

The system favors device-driven data transmission because
it does not need to obtain control of the channel before it
can transmit. If the host is to communicate with the device
under PS/2 protocol, it must first pull the clock and data
signals low. Then, it waits for the device to release control
and transmit a clock signal while the host sends a serial
frame on the data line. This data is captured on the rising
edge of the clock, while data transmission to the host from
the device is read on the falling edge of the clock.

The keyboard transmits one byte to represent the press of a
key. Exceptions to this one byte in length are the ‘SHIFT,’
‘CTRL,’ and ‘PAUSE’ keys. Keys that are not extended
have a prefix of ‘F0,’ while extended keys have a prefix of
‘E0.’ Every key has its own scan code definition after the
prefix. Figures 10 and 11 below summarize these codes
with reference to a physical keyboard. This code is sent to
the host so that user input can be displayed on the PC

display. When the key is repeatedly pressed, the byte is sent
to the host every 100 ms until the key is released.

Figure 10. PS/2 Keyboard Scan Codes

Figure 11. PS/2 Extended Key Codes

To read from the PS/2 keyboard, code was used from the
course database. This code gives an output of the keyboard
scan code. This was implemented as a block in the game
control system. The keyboard scan code was decoded
manually within the main program. This PS/2 control block
is depicted in Figure 12 below. From here, this user input
was used to control the movement of the character, in
addition to starting and stopping the game. Continuous
presses of the keyboard were ignored, as the Flappy Bird
interface requires a key to be pressed every time that the
bird ‘flaps.’

Figure 12. PS/2 Keyboard Block Diagram

In the user interface for the Flappy Bird game, only two
keys on the keyboard were used as controls. The spacebar
key of the PS-2 is used as the input to start and restart the
game, and the press of the up arrow controls the movement

of Flappy. The game begins with Flappy stationary in the
first state of the FSM and remains there until the ‘start’
signal is asserted. A flag is set when the spacebar is
pressed, which is used within the FSM as the ‘start’ signal
of the game. Once the game begins, the user must continue
pressing the up key to keep Flappy in the air. When not
pressed, Flappy will continue falling towards the bottom of
the screen and run into a pipe or the bottom border.

D. 7-Segment Display

The Game keeps a tally of the users score, or how many
pipes they have successfully passed, with the use of one of
the on board 7-segment displays of the NEXYS A7-50T
FPGA board. A 7-segment display is an electronic display
device which is used to display hexadecimal characters.
Figure 13 below shows a seven segment LED display. As
indicated by the diode equivalent circuit on the left, each
segment is an individual LED. This is a Common Cathode
(CC) display meaning all of the cathodes (or negative
terminals) of the segment LEDs are connected together.

Figure 13. 7-Segment Display

Digital equipment systems use 7-segment Displays for
converting digital signals into a form that can be easily
displayed and understood by the user. This information is
often numerical data in the form of numbers, characters and
symbols. Common anode and common cathode
seven-segment displays produce the required number by
illuminating the individual segments in various
combinations. LED based 7-segment displays are easy to
use and understand. Because of these factors, it was
decided to use 7-segment displays for the project to keep
track of the score. Every time the player successfully passes
an obstacle, the count on a 7 segment display increases by
1. This continues until the player hits an obstacle.

To implement the 7-segment displays, the control block
displayed in Figure 14 below was included in the project.
In this block, a multiplexor selects which display to work
with. The value to be shown on the display is sent on

through the multiplexor to a hexadecimal to 7-segment
decoder. A FSM of a counter from 0 to 7 with enable sends
an output to the multiplexor and the display, which enables
the correct segment and sends over the corresponding
decoded data for that segment.

Figure 14. Eight Display 7-Segment Serializer Block

III. Experimental Setup

The heart of the experiment setup is the Nexys A7-50T
FPGA Trainer Board. The Nexys board was used to control
the external peripherals used in the project (VGA and
PS-2), as well as the on board 7-segment display, using
code written in VHDL on vivado. To start developing the
code for the game the individual pieces of the system were
worked on separately to make sure they all worked before
attempting to connect them in the top file. The VGA was
the first thing handled.

The VGA screen was tested extensively with many
different ways of being implemented (covered also in
methodology and results). It was attempted to be operated
with a block RAM being used to place images on the
screen which were converted to the form of txt files. Also a
method of creating VGA animations called ‘sprites’ was
attempted. These two approaches were unsuccessful and so
a third method using a simple VGA controller to place
color in specific horizontal and vertical coordinates was
used. Once the simple VGA method allowed images to be
created on the screen, the coordinates for all of the pipes
and the bird were designed and implemented using trial and
error as there was no way to see that the screen image is
correct within a test bench simulation.

To implement the keyboard, a VHDL example code from
Professor Llamocca’s library of VHDL programs was used
as a starting point. The code was run through a test bench,
shown in Figure 15 below, to verify that it was functional
from a software perspective. Then, a preliminary hardware

test was performed by controlling two of the onboard LEDs
with space and up arrow, the two keys we intended to use
for the game. The test worked, but needed to be adjusted
slightly for the purpose of the game by making sure the key
was no longer recognized once released.

Figure 15. PS/2 Keyboard TestBench

The 7-segment display was handled in almost the exact
same fashion as the keyboard. An example code was used
and it was tested first in a testbench. After the testbench, a
hardware test was performed by incrementing a count on
one 7-segment display with the press of a button. The
7-segment and keyboard were both then ready to be added
to the topfile.

The final step in creating the game was building out the
FSM in the topfile that would control everything happening
during play of the game. At this point in the design it was
again not really possible to test the game using something
purely software based like a timing diagram from a test
bench. So to finish a trial and error approach was taken.
Small chunks of the FSM were written at a time, for
example the movement of the bird with the counter, to
verify each section was working and then a new feature
was added each time the last was successful. First the
falling of the bird was implemented, followed by the flying
up with the keyboard up arrow button. Then the realization
that a collision had occurred was added and was used to
end the game. Finally the 7-segment display was added to
increment each time a pipe was passed without collision
keeping track of the users score.

IV. Results

Initial testing of the game did not go well. While
attempting to use a more complex VGA display controller
that included a block RAM many issues occurred.
MATLAB was used to convert hand drawn images of
Flappy the bird, the pipes and an intricate background into

text files which were then to be placed on the VGA from
the RAM. However, the block RAM caused synthesizing of
the circuit to take a very very long time (near an hour or
longer). This became an infeasible way to code as
debugging became impossible. Even trying to correct a
small error would take hours. When the circuit did finally
synthesize and implement, the images were only placed on
a miniscule slice of the screen due to the low memory. An
attempt was also then made to accomplish the animation
using sprites. This too was unsuccessful and no solution
could be found for getting the sprite method to work.
Because of this, the complex VGA approach was switched
to the much more simple one explained in the methodology
section above.

Once this switch was made, a more basic but functional
version of the game was able to be created. The main
portion of the code written was the FSM. Challenges were
faced within the FSM with getting the bird falling
continuously using an embedded counter while also
recognizing the press of the keyboard button to lift the bird.
This was solved by increasing the time of the counter
slightly so that more time was available to recognize the
press of the keyboard. This did lower the difficulty of the
game for the user as Flappy now would fall much slower.
However, it was deemed a worthy trade off for the time
being so as to have a fully functioning program which
included all of the intended peripherals.

V. Conclusions

During this project, a successful working version of Flappy
bird was recreated. It may be a little less aesthetically
pleasing and a lot more simple to play, but the game is
functional and could be expanded upon to make it more
like the original. If given more time, it could be possible to
implement a more functional RAM so that the better
looking artwork could be used for the game. More time to
debug would also make it possible to speed the game up,
and possibly even find a way to make the pipes regenerate
so that the game will continuously run till the user makes
an error. As it stands, the game is limited and a bit crude,
but it’s fully functioning with no errors.

VI. References

1. U. Zoltán, “Nexys-A7-50T-OOB” GitHub, 2006.
[Online]. Available:
https://github.com/Digilent/Nexys-A7-50T-OOB/
blob/master/src/hdl/Ps2Interface.vhd. [Accessed:
01-Apr-2022].

2. D. Llamocca, “VHDL Coding for FPGAs,”
Reconfigurable Computing Research Laboratory.

[Online]. Available:
http://www.secs.oakland.edu/~llamocca/VHDLfo
rFPGAs.html. [Accessed: 1-Apr-2022].

3. S. K, “VGA Display Controller,” Digilent
Reference. [Online]. Available:
https://digilent.com/reference/learn/programmabl
e-logic/tutorials/vga-display-congroller/start.
[Accessed: 01-Apr-2022].

4. A. Brown, “Nexys A7 Reference Manual,”
Digilent Reference. [Online]. Available:
https://digilent.com/reference/programmable-logi
c/nexys-a7/reference-manual. [Accessed:
1-Apr-2022].

