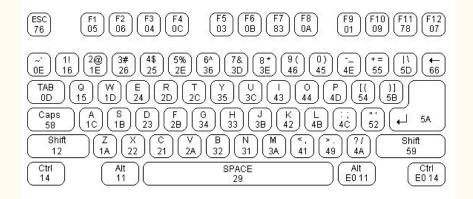
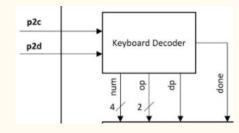
Signed Fixed-Point Calculator

Yusuf Husen Khatri, Peter Barkho, Christopher MacKenzie, Eduardo Garcia ECE 4710/5710 - Computer Hardware Design - Winter 2022

Overview

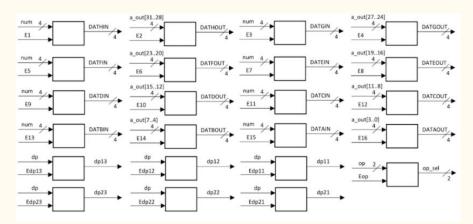
- Our goal was to create a calculator for signed fixed-point numbers
- The calculator should be able to perform each of the following arithmetic operations
 - \circ Addition, Subtraction, Multiplication, and Division
- The calculator should take input from a keyboard
 - 2 Operands (16-bit Hex), Decimal Points (Fixed-Point), and Operation
- The calculator should output the result of the selected operation on the 7-Segment Display in Hexadecimal format with the proper decimal point position


Components


- Keyboard Decoder
- Registers
- Arithmetic Operations Circuit
- 7-Segment Serializer
- Multiplexers
- Finite State Machine

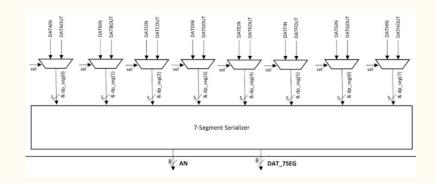
Keyboard Decoder

- Uses my_ps2keyboard.vhd component
- Operand Number
 - \circ 0000 0 : 0x45
 - \circ 0001 1 : 0x16
 - \circ 0010 2 : 0x1E
 - \circ 0011 3 : 0x26
 - \circ 0100 4 : 0x25
 - \circ 0101 5 : 0x2E
 - \circ 0110 6 : 0x36
 - 0111 7 : 0x3D
 - \circ 1000 8 : 0x3E
 - \circ 1001 9 : 0x46
 - 1010 A : 0x1C
 - 1011 B : 0x32
 - 1100 C : 0x21
 - 1101 D : 0x23
 - 1110 E : 0x24
 - 1111 F : 0x2B


- Operations
 - \circ 00 Addition (+): 0x55
 - \circ 01 Subtraction (-) : 0x4E
 - \circ 10 Multiplication (x) : 0x22
 - $\circ \qquad 11 \text{ Division (/) : } 0x4A$
- Decimal Point
 - \circ 1 Decimal Point (.): 0x49

Registers

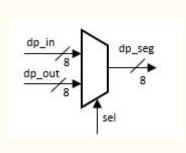
- We utilize a total of 23 registers in this design (my_rege.vhd)
- The purpose of the registers are as follows:
 - 3 registers to hold decimal point position in operand 1 (1-bit each)
 - 3 registers to hold decimal point position in operand 2 (1-bit each)
 - 8 registers to hold operand 1 and 2 data (4-bits each)
 - 8 registers to hold the calculated output data (4-bits each)
 - 1 register to hold the operation selected (2-bits)
- The registers are enabled by individual enable signals produced by the FSM.
- Timing of the enable signals is based off when inputs are pressed, and when outputs are calculated. Further shown in FSM diagram.

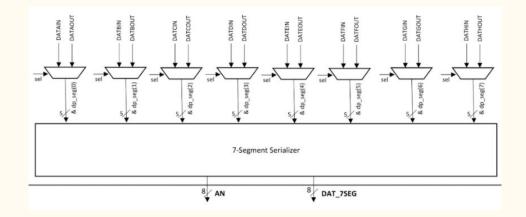


Arithmetic Operations Circuit

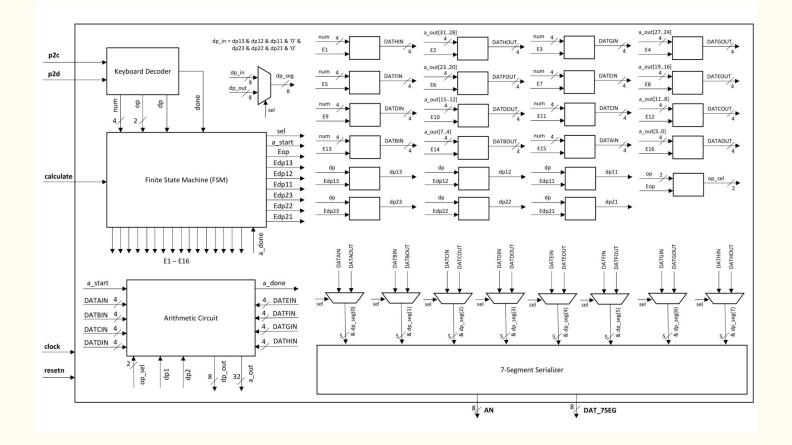
- Responsible for performing each of the arithmetic operations
- Mainly composed of 2 Addsubs, a Signed Multiplier, and a Signed Divider
 Unit 2 Notes
- Addition and Subtraction
 - $\circ \quad \mbox{Performs Alignment (Zero-Padding and Sign-Extension) based on input decimal point position}$
- Multiplication
 - \circ No need for alignment Simply performs multiplication with the operands
- Division
 - Performs Alignment and utilizes 4 Precision Bits (Appends "0000" to Operand 1)
- Outputs 32-bit result of selected operation
- Based on the operation and the input decimal point positions, this circuit will also determine the output decimal point position

7-Segment Serializer

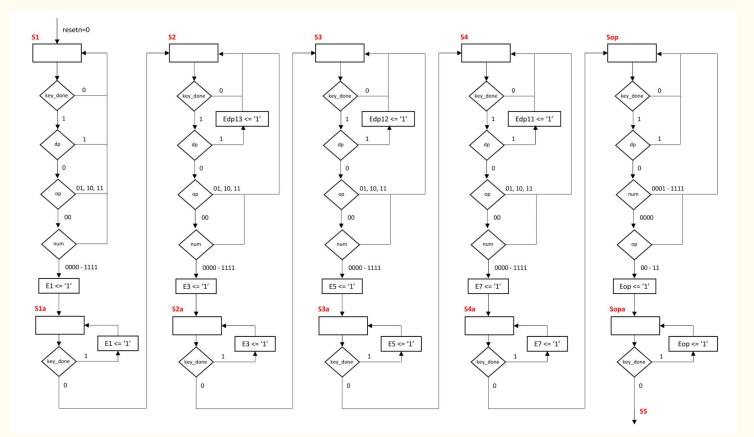

- Based on serializer.vhd and hex2sevenseg.vhd from Lab 3
 - Modified these files for this project to handle the decimal point 0
- A-H are fed from 8 multiplexers that select between • input and output numbers.
- Input numbers shown as keyboard inputs are entered ie . when output switch is '0'.
- Output numbers are shown when output switch is • flipped to '1'.
- Output numbers are the calculated values stored in • registers.
- The decimal point is handled by combining the • multiplex signal into the serializer with the decimal point value. The placement of the point is calculated in the HEX to 7 segment decoder comparative circuit.
- FSM, counter, and 3-8 decoder multiplex display which • displays the eight digits and decimal point.

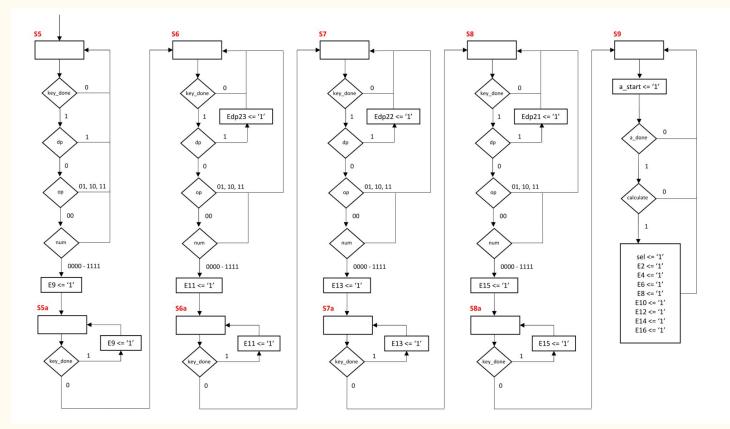


- HEX to 7 8 DAT_7SEG segment decoder 3-to-8 Counter decoder > (0.001s) Counter FINITE STATE 0 to 7 MACHINE with enable
- 8-display Serializer: Eight 7-segment displays.


Multiplexers

 As mentioned in the previous slide, the main purpose of the several multiplexers we use in our design was to select between showing the user input on the 7-Segment Display while they are inputting and the arithmetic output on the 7-Segment Display when the calculation is complete




Block Diagram

Finite State Machine

Finite State Machine (cont.)

Project Demonstration

- Addition
 - \circ 37.AB + 1.FC8 = 0039.A780
- Subtraction
 - \circ F.540 682.5 = F97D.0400
- Multiplication
 - \circ 3D.21 x 6.CF7 = 1A0.4E6D7
- Division
 - $\circ \quad \mathrm{FFE.6} \div 000.7 = \mathrm{FFFFFFC.5}$

• Video Demo (Backup) - <u>https://youtu.be/milBWN9lGGo</u>

Thank you