
Signed Fixed-Point Calculator
Yusuf Husen Khatri, Peter Barkho, Christopher MacKenzie, Eduardo Garcia
ECE 4710/5710 - Computer Hardware Design - Winter 2022



Overview

● Our goal was to create a calculator for signed fixed-point numbers
● The calculator should be able to perform each of the following arithmetic 

operations
○ Addition, Subtraction, Multiplication, and Division

● The calculator should take input from a keyboard
○ 2 Operands (16-bit Hex), Decimal Points (Fixed-Point), and Operation

● The calculator should output the result of the selected operation on the 
7-Segment Display in Hexadecimal format with the proper decimal point 
position



Components

● Keyboard Decoder
● Registers
● Arithmetic Operations Circuit
● 7-Segment Serializer
● Multiplexers
● Finite State Machine



Keyboard Decoder
● Uses my_ps2keyboard.vhd component
● Operand Number

○ 0000 - 0 : 0x45
○ 0001 - 1 : 0x16
○ 0010 - 2 : 0x1E
○ 0011 - 3 : 0x26
○ 0100 - 4 : 0x25
○ 0101 - 5 : 0x2E
○ 0110 - 6 : 0x36
○ 0111 - 7 : 0x3D
○ 1000 - 8 : 0x3E
○ 1001 - 9 : 0x46
○ 1010 - A : 0x1C 
○ 1011 - B : 0x32
○ 1100 - C : 0x21
○ 1101 - D : 0x23
○ 1110 - E : 0x24
○ 1111 - F : 0x2B

● Operations
○ 00 - Addition (+) : 0x55
○ 01 - Subtraction (-) : 0x4E
○ 10 - Multiplication (x) : 0x22
○ 11 - Division (/) : 0x4A

● Decimal Point
○ 1 - Decimal Point (.) : 0x49



Registers
● We utilize a total of 23 registers in this design 

(my_rege.vhd)
● The purpose of the registers are as follows: 

○ 3 registers to hold decimal point position 
in operand 1 (1-bit each)

○ 3 registers to hold decimal point position 
in operand 2 (1-bit each)

○ 8 registers to hold operand 1 and 2 data 
(4-bits each)

○ 8 registers to hold the calculated output 
data (4-bits each)

○ 1 register to hold the operation selected 
(2-bits)

● The registers are enabled by individual enable 
signals produced by the FSM.

● Timing of the enable signals is based off when 
inputs are pressed, and when outputs are 
calculated. Further shown in FSM diagram.



Arithmetic Operations Circuit

● Responsible for performing each of the arithmetic operations
● Mainly composed of 2 Addsubs, a Signed Multiplier, and a Signed Divider

○ Unit 2 Notes
● Addition and Subtraction

○ Performs Alignment (Zero-Padding and Sign-Extension) based on input decimal point position
● Multiplication

○ No need for alignment - Simply performs multiplication with the operands
● Division

○ Performs Alignment and utilizes 4 Precision Bits (Appends “0000” to Operand 1)
● Outputs 32-bit result of selected operation
● Based on the operation and the input decimal point positions, this circuit will 

also determine the output decimal point position



7-Segment Serializer
● Based on serializer.vhd and hex2sevenseg.vhd from 

Lab 3
○ Modified these files for this project to handle the decimal point

● A-H are fed from 8 multiplexers that select between 
input and output numbers.

● Input numbers shown as keyboard inputs are entered ie 
when output switch is ‘0’.

● Output numbers are shown when output switch is 
flipped to ‘1’. 

● Output numbers are the calculated values stored in 
registers.

● The decimal point is handled by combining the 
multiplex signal into the serializer with the decimal 
point value. The placement of the point is calculated in 
the HEX to 7 segment decoder comparative circuit.

● FSM, counter, and 3-8 decoder multiplex display which 
displays the eight digits and decimal point.



Multiplexers

● As mentioned in the previous slide, the main purpose of the several multiplexers 
we use in our design was to select between showing the user input on the 
7-Segment Display while they are inputting and the arithmetic output on the 
7-Segment Display when the calculation is complete



Block Diagram



Finite State Machine



Finite State Machine (cont.)



Project Demonstration

● Addition
○ 37.AB + 1.FC8 = 0039.A780

● Subtraction
○ F.540 - 682.5 = F97D.0400

● Multiplication
○ 3D.21 x 6.CF7 = 1A0.4E6D7

● Division
○ FFE.6 ÷ 000.7 = FFFFFFC.5

● Video Demo (Backup) - https://youtu.be/milBWN9lGGo

https://youtu.be/milBWN9lGGo


Thank you


