
Signed Fixed-Point Number Calculator

Yusuf Husen Khatri, Peter Barkho, Christopher MacKenzie, Eduardo Garcia
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

ykhatri@oakland.edu, peterbarkho@oakland.edu, cmackenzie2@oakland.edu, eduardogarcia@oakland.edu

Abstract - The goal of this project was to develop a
signed fixed-point number calculator on the Nexys
A7 FPGA Board with VHDL. Due to the sheer
number of use cases that calculators have across
several fields and industries, their importance and
implementation should be well understood.
Throughout the course of this project, the team
members gained much more experience and
knowledge of how calculators function, how to
interface with the keyboard peripheral, how to
output results to a display, and finally how to
design a datapath controlled by a finite state
machine. In the end, the team was able to
successfully design a system that functions as a
signed fixed-point calculator.

I. INTRODUCTION

Calculators are among the most important and
highly used tools across many fields, including
mathematics, engineering, and science. The main
reason being that calculators can perform operations
much more quickly than a single human could. This
tool heavily reduces the time taken on computing
complex calculations by hand and allows for more
time for humans to do research and advance in their
fields. As such, this team had an interest in learning
more about the design of such tools. Therefore, the
goal of this project was to utilize skills gained from
this course to design a calculator that is able to
perform calculations with signed fixed-point
numbers. This calculator will be able to perform each
of the following arithmetic operations: Addition,
Subtraction, Multiplication, and Division. The team
will utilize the on-board seven-segment display in
order to output the result, and a keyboard in order to
read in input from the user. The user will be able to
input two fixed-point numbers in hexadecimal format
and select an operation to compute the calculation.
Each of the input operands can be up to 16 bits,
where the integer and fractional portions of the
operands will be decided by the user by placement of
the decimal point. The calculator will perform the
operation and display the output on the 7-Segment
display in hexadecimal format with the correct
decimal point placement.

II. METHODOLOGY

We have designed the system to work as follows:
The user enters the first operand with the hex values
from the keyboard (F, E... 2, 1, 0). Within the first
operand, the user should enter a decimal point (#.###,
##.##, or ###.#). As the user is inputting values, the
values should show up on the 7-segment display.
Once the first operand is complete, the user should
then press an operation on the keyboard (+, -, x, /).
Upon doing this, the user should enter the second
operand with the hex values on the keyboard in a
similar way as the first operand. Once all inputs are
complete, SW0 can be toggled ON and the system
will show the result of the calculation. From here, the
user must press the CPU reset button to clear the
display and start from the beginning with the next
calculation.

The components utilized in this project include a
PS2 Keyboard Decoder, an Arithmetic Operations
Circuit, several Registers, a 7-Segment Display
Serializer, several multiplexers, and finally a Finite
State Machine. Each of these components will be
explained in further detail in subsequent sections

A. Keyboard Decoder

The keyboard decoder is a circuit that reads an
eight bit signal from the standard component
“my_ps2keyboard” [1] and outputs four signals.
my_ps2keyboard is a standard component developed
and provided by Professor Daniel Llamocca. This
component waits for a ten bit input signal from a
PS/2 keyboard and then outputs an eight bit signal
that corresponds to the hex value of the
corresponding key that was pressed. The timing and
validity of the keyboard input is handled within
my_ps2keyboard by waiting for a valid length input,
and validating a stop and parity bit within the input.
When these bits are correct, the component outputs
the desired eight bit sequence, which is tied directly
to our designed keyboard decoder. The outputs from
the decoder are: done, output_number,
output_operation and output_dp. The ‘done’ output
signal is tied directly to the ‘done’ output signal from

the component my_ps2keyboard. Done is pushed
high again when a valid stop and parity bit are
captured, which means the keyboard input data is
correct and ready to be decoded. The second output
signal output_number is the hexadecimal value of the
decoded input data from the keyboard. The eight bit
input “DOUT” is read from the component
my_ps2keyboard. The keyboard decoder then uses
these eight bits as the data from the keyboard without
having to manage timing and parity. These eight bits
are then compared using a case statement.

The case statement outputs the hexadecimal value
of the corresponding key represented by the keyboard
input data. Please view the Appendix for PS2
keyboard values. This section of the decoder selects
for the keystrokes: 0-9 and A-F. All other keystrokes
are decoded as “0000”. This hex value then goes on
to be stored and used for calculations within the
arithmetic operations circuit. The third output signal,
output_operation functions very similarly to the
output_number signal. The keyboard input data is
read from the my_ps2keyboard component, then is
converted to an arbitrary two bit value. This arbitrary
value is used later on in the project and is selected for
these specific values, so decoding into the hex values
of the operational input is not necessary.. In this case
the decoder decodes the values of the operands (*, /,
+, -) from the keyboard input data. The decoded
value will then go into the arithmetic operations
circuit to select which operation will take place.
Lastly, the output signal output_dp. This signal again
functions the same as the output_number signal. The
difference is this part of the decoder is looking for the
corresponding input data of the decimal point from
the keyboard. The decimal point output signal is a
single bit signal and goes on later to determine where
the decimal point is present in the operations. This
signal is tied directly to an input into the FSM.

B. Arithmetic Operations Circuit

The Arithmetic Operations Circuit is a circuit
which is capable of performing the addition,
subtraction, multiplication, and division of signed
fixed point numbers. It is essentially composed of
two addsubs (one for addition and one for
subtraction), a signed multiplier (based on an array
multiplier), and a signed divider (based on an
iterative divider) [2]. Each of these individual
components are available from the notes and VHDL
tutorial. The Arithmetic Operations Circuit takes in
both operands as inputs, where each operand is split
up into four 4-bit inputs. This means that the circuit is
able to operate with 16-bit operands. Additionally,
this circuit takes in a start signal, the operation you

would like to do (2-bit input), and the decimal
positions in each of the operands (input as an
integer). As output, the circuit will give the result of
the calculation as a 32-bit number, as well as an
integer representing the decimal point position in that
number. In terms of the actual calculations, this
circuit also performs alignment on the input
operands. Due to having different fixed-point
representations as input, we perform alignment for
the addition and subtraction such that the output is
always of the form [32, 16] (16 integer bits and 16
fractional bits). For multiplication, the alignment
does not matter very much. However, the input
decimal positions help to determine the output
decimal position. Finally, for the division, we
perform alignment and utilize 4 precision bits. These
precision bits allow for a consistent output in terms of
decimal point position.

Thus far, this description has been a high level
overview of the Arithmetic Operations Circuit.
However, it is also important to understand the inner
workings of it. The main characteristic of this circuit
which is crucial to signed fixed-point numbers is the
alignment of the operands. If one were to perform a
calculation without proper alignment, then the result
will almost never be correct. As stated previously, the
alignment of the operands largely depends on the
decimal point positioning of the numbers. One
possible method of alignment is to look at the
decimal point positions relative to each operand and
try to match the other. While this would work, the
implementation of a solution like this could get
messier. The solution that the team members utilized
in this design was to effectively, as stated previously,
make both operands into 32-bit numbers through
sign-extension and zero-padding. This would be done
relative to the operands own decimal point
positioning. For example, suppose the user has
inputted a 16-bit operand of the following fixed-point
form: [16, 12]. This implies that the number looks
like this: “#.###”. In this case, in order to make this
number into [32, 16], the number is sign extended by
12-bits using the MSB and the number is zero padded
by 4 bits after the LSB. When the operand is of the
form [16, 8] (“##.##”), the number is sign extended
by 8 bits using the MSB and the number is zero
padded by 8 bits after the LSB. When the operand is
of the form [16, 4] (“###.#”), the number is sign
extended by 4 bits using the MSB and the number is
zero padded by 12 bits after the LSB. When the
number does not have any fractional portion, then the
number is zero padded by 16 bits. This alignment is
done to both operands and is crucial for addition,
subtraction, and division. It essentially allows for a

consistent and deterministic output by making both
operands of the same form.

Another important aspect of the Arithmetic
Operations Circuit is the determination of the output
decimal point position. In the case of addition and
subtraction, due to the fact that the alignment was
done beforehand, the decimal point position will
always be in the 4th position (“####.####). This is
another benefit to performing alignment this way - it
allows for consistent decimal point positioning for
the result. For multiplication, the output decimal
point position would be the sum of the two input
decimal point positions. For example, if the input
decimal point positions were 2 and 3 for operand 1
and 2, respectively, then the output decimal point
position would be 5 (“###.#####”). For division, the
team decided to utilize 4 precision bits. Therefore, the
output result will always have a decimal point
position of one (“#######.#”). This is consistent and
a byproduct of how fixed-point division works. If we
were to have an increased number of precision bits
(8, 12, etc.), then the decimal point position would
simply move, but it would always be consistent.

C. Registers

The register in our design is a basic N-bit register
that stores input data from the user and also has the
ability to copy/output data to other components of the
system. The register consists of an “enable” function
that syncs with the clock in the finite-state-machine
in order to start the process of storing/outputting data.
It also consists of a synchronous clear function which
can clear all the data stored in the register. There are a
total of 23 registers in the design of the system. The
registers are enabled independently by their own
enable signals directly controlled by the FSM. The
FSM first enables the registers responsible for storing
the input data from the user chronologically as the
user presses correct keys on the keyboard. The
second set of registers responsible for storing the
calculated values are all enabled simultaneously after
the arithmetic circuit signals that it has completed the
calculations i.e., signal calculate is pushed high. The
registers responsible for storing the decimal point
placement and the operation are enabled similarly to
the input data registers. When the user inputs a
decimal point or an operation command, the FSM
enables the corresponding registers. One of the
registers is a 2-bit register that is responsible for
storing the operation type(s) that the user selects for
the calculation. 8 of the registers are 4-bit registers
that are used to collect the user’s input for the 1st and
2nd operand. 3 other 1-bit registers are used to store
the decimal point placement given the user’s input.

These 12 registers output data to the finite-state
machine in our design where the calculation is
performed. Furthermore, the 11 other registers are
used to store the output result of the calculation. 8
4-bit registers are responsible for the output result
after the calculation is performed, and 3 1-bit
registers are used to determine the decimal point
placement of the output result.

D. Seven-Segment Serializer

This particular 7-Segment Serializer is being fed
by eight, 2-to-1 Multiplexers. The subcomponents
contained within the Serializer are the following:
HEX-to-7 Segments Decoder, 3-to-8 Decoder,
Counter, and its own unique Finite State Machine.
The ‘serializer’ component [3] utilized is almost
similar to its version of Lab 3’s Design of an
Accelerometer Data Retriever. However, the
serializer.vhd and hex2sevenseg.vhd [4] files were
modified so that they take 5 bits as input and the
DAT_7SEG output is of 8 bit length. The reasoning
behind this additional bit is to handle the decimal
point. Due to this system being a calculator for signed
fixed-point numbers, displaying the decimal point is
important. By displaying the 8 digits from inputs A to
H, we will be capable of doing so by serializing the
HEX digits through the decoder. The Counter
integrated enables the digit to be illuminated
constantly by a generic component. With a behavior
on the clock tick of 1 millisecond, will allow the state
transitions to occur at that particular time set, which
brings us to the next component, the 3-to-8 Decoder.
The input signals and the enable signals to the eight,
7-segment displays are active low from the decoder,
which are derived from the FSM and the multiplexer.
The HEX to 7 segments decoder enables the LEDs to
illuminate the digits from ranges, one through nine
and A through F, twice, followed by a decimal point
for one set in case it’s needed. Last, but not least a
Finite State Machine of 8 states is implemented into
the serializer feeding into the 3-to-8 Decoder. Which
as, for every state there is a particular logic
designated to execute whenever it’s required. Please
view the Appendix for the modified serializer
diagram.

E. Multiplexers

The main purpose of the several multiplexers that
are used in this design was to select between showing
the user input on the 7-Segment Display while they
are inputting and the arithmetic output on the
7-Segment Display when the calculation is complete.
There are a total of eight two-to-one bus
multiplexers. The inputs of these multiplexers are tied

to the corresponding registers for each digit on the
seven segment display. These signals are declared as
“DATAIN-DATFIN” for the user inputs and
“DATAOUT-DATFOUT” for the calculated values.
These connections can be further visualized in the
full block diagram (Figure 1). The outputs for the
multiplexers are tied directly to the A-F input bus
signals in the 7-segment serializer. These signals can
be further explored in the Seven-Segment Serializer
section. The multiplexers utilize the ‘sel’ signal
which is controlled by the Finite State Machine. The
‘sel’ signal is tied to switch 0 on the nexys board.
This allows the user to quickly switch between
showing the current input and the calculated output.
When ‘sel’ is zero, then the Seven-Segment Display
will show the input values whereas when ‘sel’ is one,
then the Seven-Segment Display will show the output
values.

F. Finite State Machine

The Finite State Machine (FSM) houses much of
the logic that occurs when the user is inputting their
operands, operations, and decimal points. There are a
total of 19 states in this FSM. The first eight states
are designated for the user to input their first operand,
including the decimal point position. The following
two states are designated for the user to input their
operation of choice - addition, subtraction,
multiplication, or division. The next eight states are
designated for the user to input their second operand,
including its decimal point position. The states up to
this point are fairly similar to each other. They
essentially ensure that the user is properly inputting
things from the keyboard at their designated times.
The final state simply displays the output on the
7-segment display when the arithmetic operations
circuit is done operating and SW1 on the board is
toggled on. From this point, the user can press the
reset button in order to clear the display, return to the
first state, and start another operation. Please view the
Appendix for the diagram of the FSM.

Going into detail on the individual states, the
Finite State Machine in this design begins in S1. In
S1, the user inputs the first hexadecimal portion of
operand 1. The logic of the FSM prevents the state to
continue unless the user has inputted a proper value.
In the case of an erroneous input (such as a
non-hexadecimal character like ‘S’, for example),
then the FSM will assume that the input is
hexadecimal 0. In the next state, S1a, the logic is
simply to make sure that a single key-press has
occurred for the first portion of operand 1. The
following states, S2-S4 (and their corresponding
intermediary states) are very similar to S1. The only

difference is that the user is also able to input a
decimal point within these certain states. When a user
inputs a decimal point position, then the logic checks
to make sure that a decimal point makes sense here
(the user has not inputted another decimal point
previously). If that logic checks out, then the enable
for the decimal point register is driven high in order
to capture that position. The decimal point position
input is not enough to move to the next state, so the
FSM stays within its state until the user has inputted
a hexadecimal value for the operand. After S4 and
S4a, the Finite State Machine moves on to Sop, a
state designated for the user to input their operation
of choice. In this state, the user can not enter a
hexadecimal number or a decimal point, but rather
only a correct operation. If the user inputs an
erroneous value here, then the system will simply
assume that the user has selected addition. After Sopa
(the intermediary state for Sop), then S5 is entered.
States S5-S8 work similarly to S1-S4 (along with
their intermediary states). After S8a, the FSM will
enter S9, which is the final state. The FSM will start
the arithmetic operations circuit here and wait for it
to finish. Once finished, the user is able to control the
‘calculate’ signal with SW0 to show the final output
on the Seven-Segment Display. Finally, as stated
previously, the user has now finished their calculation
and can press the reset button in order to clear the
display and start again from S1.

G. Signed Fixed Point Calculator Top File

Each of the smaller components were eventually
interconnected in a top file - my_fx_calculator.vhd.
In order to view the block diagram of the entire top
file, please view the Appendix. The main inputs of
this top file were the ‘clock’ and ‘resetn’ signals,
‘ps2c’ and ‘ps2d’ for the PS2 keyboard interfacing,
and a ‘calculate’ signal which is directly controlled
by SW0 on the FPGA board (used by the user to
show the output result or not). The main outputs of
this top file are the ‘AN’ and ‘DAT_7SEG’ which are
directly related to the outputs of the seven-segment
serializer. Using these two outputs, the
seven-segment display was able to show the inputs
that the user was entering with the keyboard and the
final result of their calculation. In addition, this top
file contains the VHDL code for the Finite State
Machine and its logic. The team decided to develop
the Finite State Machine in the top file itself due to
stylistic reasons. It could have been a separate
file/component, but it was included in the top file
itself since it made no difference on the resulting
operation of the system.

III. EXPERIMENTAL SETUP

The experimental setup for this project involved
creating testbenches for the main components of the
system, such as the arithmetic operations circuit. By
testing these components with simulation, the team
members were able to verify that the system should
technically work. However, the system did not
initially work on the board despite the results of the
simulation of the components. After much testing, the
team was able to find the hidden issues with the
design and resolve them in order to make the system
work on the FPGA. After verifying that the system
was working on the board, the team was able to test
various computations with the calculator to ensure
that the proper results were being achieved for
addition, subtraction, multiplication, division,
different decimal point positions, positive and
negative numbers, and erroneous inputs from the
keyboard.

IV. RESULTS

As a result of testing the design of the system, the
team was able to verify that the system behaves as
expected. In order to show that the system is working
properly, the team has put together various test cases.
These test cases are shown below for each operation:

Addition: 37.AB + 1.FC8 = 0039.A780
Subtraction: F.540 - 682.5 = F97D.0400
Multiplication: 3D.21 x 6.CF7 = 1A0.4E6D7
Division: FFE.6 ÷ 000.7 = FFFFFFC.5

In addition, these test cases were recorded and are
available in the following video to show that these
cases truly work: https://youtu.be/milBWN9lGGo

CONCLUSIONS

In conclusion, the team was ultimately able to
meet the requirements set out initially for the project.
That is to say a working signed fixed-point calculator
was successfully designed and implemented on the
Nexys A7 FPGA Board. Many important lessons
were learned throughout this development process,
such as how to interface with a PS2 keyboard to read
and decode user input, how to output data onto a
Seven-Segment Display with a decimal point, and
how to design a Finite State Machine to incorporate
logic within systems. In addition, the team gained a
much better understanding of how calculators are
created and designed.

While the system behaves as expected, that is not
to say it is a perfect system. Given additional time,

several improvements could be made to the system to
make it an overall better calculator. For example, this
calculator is only able to operate with 16-bit
operands. This is a limitation due to the fact that there
are only 8 Seven-Segment Displays available on the
board. If there were more 7-Segment Displays
available on the board, then the user would be able to
input a much larger number and perform large
calculations. An improvement that could be made to
solve this problem would be to instead utilize an
LCD as a display. This way, the user is not limited by
the number of Seven-Segment displays available on
the board. While this would make the design and
logic of the system more complex, it is certainly a
route that could be made in the future. Another
possible improvement would be to allow the user to
select between signed and unsigned fixed-point
numbers. This could easily be done in the future and
allow for more versatility of the system, as the
components for signed and unsigned arithmetic are
very similar. Lastly, a logistical improvement could
be made to the keyboard decoder component.
Currently the decoder selects for the expected
keypresses 0-F, operands, and a decimal point, while
pushing all other inputs to “0000”. This may cause an
issue when a user mistakenly presses another key. An
improvement could be made to allow the decoder to
see these keystrokes, but not assign any value to the
decoded output. This would allow the user to press
the correct key even after pressing an invalid key,
rather than having to reset the system to correct their
mistake.

Overall, the team was able to successfully
implement a signed fixed-point number calculator on
the Nexys A7 FPGA Board.

REFERENCES

[1] Llamocca, Daniel. VHDL Coding for FPGAs,
Oakland University, “my_ps2keyboard.vhd”

[2] Llamocca, Daniel. Unit 2 Notes,
Oakland University, Multiplier and Divider

[3] Llamocca, Daniel. Laboratory 3,
Oakland University, “serializer.vhd”

[4] Llamocca, Daniel. Laboratory 3,
Oakland University, “hex2sevenseg.vhd”

APPENDIX

Figure 1. Block Diagram

Figure 2. Finite State Machine

Figure 3. PS2 Keyboard Values

Figure 4. Modified 7-Segment Serializer with Decimal Point Feature

