
FPGA Music Visualizer

Benjamin Rojewski, Nicholas Spanos, Justin Janulewicz & Andrew Waite
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: brojewski@oakland.edu, nspanos@oakland.edu, jjjanulewicz@oakland.edu, agwaite@oakland.edu

Abstract — The implementation of a music intensity visualizer
on the Artix-A7-100T board as a demonstration of the
knowledge gained in this course.

I. INTRODUCTION

The device we intend to make is an audio
visualizer. What it will do is take the incoming music from
the Pmod port, represented as a voltage, and convert it to
digital data using an ADC and then display this data onto a
VGA display. The inspiration behind this project is that we
all really like music, and sometimes like to look at
visualizers for them. The audio visualizer will be able to be
shown on a display while the music is playing through a
speaker or headphones. This project consists of VHDL
code, data capture using an I2S2 Pmod component, data
processing with registers, decoders, mux, and finally a
display control with VGA drivers.

II. METHODOLOGY

A. Data Capture
To start, our project uses a pmod to take in an audio

input from an analog signal which is then fed into a ADC to
transfer it into a 24-bit digital signal using the I2S protocol
that is used in our project. Because the max voltage from the
Nexys a7-100T pmod ports are 3.3V, and the ADC converts
to a 24 bit signal, the step size is about 197 nV(1) which is
much smaller than this project requires.

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1: 𝑆𝑡𝑒𝑝 𝑆𝑖𝑧𝑒 = 3.3 𝑉𝑜𝑙𝑡𝑠

2 24 ≃ 197 𝑛𝑉

Because this step size is smaller than we needed, we
decided to truncate this 24-bit signal down to a total of 8
bits before passing it to the rest of the data processing
circuit. An 8 bit signal from a 3.3V source gives us a much
larger step size of about 13mV.(2)

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2: 𝑆𝑡𝑒𝑝 𝑆𝑖𝑧𝑒 = 3.3 𝑉𝑜𝑙𝑡𝑠

2 8 ≃ 13𝑚𝑉

After we cut the 24-bit signal down to 8 bits, we decided
to cut down the number of steps we displayed to be even
lower. We changed the number of steps to a mere 8 by
selecting only the most significant 1 in the 8-bit signal and
making every bit lower than it a ‘1’ as well. For example, if
the 8-bit signal was “00100111” then we only collected the
8 bit value of “00111111”.

B. Data Processing
After receiving the data from the I2S2 Pmod, we were

able to process it within the board and set it up so that it can
be displayed through the VGA. To do so, the data
processing section incorporates four main components:a
series of 8 cascaded registers, a counter to control when
registers shift the data down the stack of registers, one
64-to-1 mux used to select what data is output, and a
decoder to sign extend the output data bit. First the data is
passed from the Pmod input into the first register. There are
a total of 8 registers, one for each column to display in the
VGA output.

mailto:jjjanulewicz@oakland.edu
mailto:agwaite@oakland.edu

Implemented into the top file of the Data Processing portion
of the music visualizer is a counter, with an output signal
called “REGE_TICK”. This signal controls when the data is
passed from one register into the next. This counter counts
from an arbitrary value that we thought looked good, as the
first priority of a music visualizer is to present the music
signal in an attractive way. From the cascading register, the
data signals are attached to a 64-to-1 MUX.

This, in conjunction with the select signal given by
the BITMAP_FSM, is so that we are able to choose
specifically which part of the bitmap stored in the registers
needs to be shown at which location and moment for the

VGA display. To facilitate this, we attached a decoder to the
end of the mux that functions to sign extend the bit given to
it into 12 bits. This is necessary as we have initialized the
simple VGA controller to use an input of 12 bits for RGB
control.

C. Display Control

The heart of the VGA signal output is a simple
VGA controller provided by Prof. Llamocca. Its original
design was to change the entire screen's color by using 12
switches as the input. With this, in combination with an
FSM to generate different necessary signals like VS and HS,
it is able to output 12-bit RGB values to the screen with
control as to where pixels are drawn. We went ahead and
modified this to simply take the decoded (sign-extended)
output of the datapath, and draw the result on the screen.

In order to control this, we need an FSM to dictate
when and where the registers are accessed. A critical part of
the Display control is the bitmap_FSM. This FSM controls
which register is selected at any given time, and which
specific value is selected from this register.

This is important, as in order to draw and extend
the signals into the 8x8 grid of the screen, we need precise
control of what is being displayed. The FSM functions by
first separating the screen into 8 equal rows, 60 pixels tall
each. When it does this, it assigns an initial offset between 0
and 7 to the select signal which uses the mux to output from
any value in any register. It then outputs this value for 80
pixels, using an external counter tied to VGA_TICK which
determines the length of each square in the grid. After 80
pixels the counter flips signal Z high for a clock cycle,
which then triggers the FSM to select the next signal to
draw. In order to select from the next register, we add an
offset of 18 to the select line every time the counter is
finished drawing 80 pixels (. Using this, we were able to
create a grid of 8x8 60 by 80-pixel squares on a VGA
screen, with each being able to be created from a bitmap
created in a series of cascaded registers. The reason for the
18 offset is because we subjectively chose REGE_TICK to
have priority over timing, in order to create a more
eye-catching visualizer. Because of this, the speed that the
register data is presented was chosen to look appealing, then
the offset was tuned until it got the best-looking output,
which happened to be 18.

III. EXPERIMENTAL SETUP

The experimental setup for this project was simple
and to the point; we incorporated both hardware and
software solutions to create this project. The main items
used were: the Artix A7-100T, Vivado VHDL, Youtube, I2S
Pmod Audio Headers, AUX connector, VGA connector,
speaker, monitor, and an audio generating device (phone,
Laptop, etc).

The hardware was connected as follows: the Phone
or laptop was used to generate the audio input. This input
was transferred from the device to the board via an aux
connector. In order to receive the data, the Pmod audio
header was placed onto the board where it functioned as a
bridge between the hardware and software portion of our

project. Once the audio was routed through the connector
into the board, we utilized Vivado VHDL to manipulate the
data into a format usable to display. After doing so, we sent
the audio to a display connected via VGA while
simultaneously sending it back through the Pmod header to
a speaker. This meant our viewers could both see and hear
the music while it was being played.

The VHDL code used can be split up into two main
sections: code created and code borrowed from other
sources. The portions borrowed are the Pmod I2S2 code [1]
and a portion of the simple VGA driver [2]. The former was
used because it was created specifically for the I2S Pmod
Header and the latter was used to establish a starting point
for the VGA driver used in the project. The I2S code was
modified slightly to fit our requirements and so was the
VGA code, as mentioned in the previous sections. The rest
of the code was created from scratch to fit the project
requirements and once pieced together, Vivados simulation
software was used to debug the code and correct errors.
Once the kinks were worked out, the program was uploaded
to the board and then connected to the VGA port on the
monitor via VGA cable. Once connected, the VGA window
will pop up and the program is ready to begin.

IV. RESULTS

Once the project is set up in accordance with the
experimental setup, the user must start the music on the
input device and then adjust the volume - as the volume
increases, the bars grow vertically and the inverse happens
when lowering the volume. This behavior is anticipated and
what we had expected to create when setting out. This does
not mean we didn't have any issues while creating our
project, however.

There were a handful of issues we encountered.
The first, and arguably most important, had to do with the
I2S playback code we used in the data capture portion of the
project. Here, we encountered two things: first, the code was
created for a different board, and second, an internal clock
wiz IP used in the code had to be changed. The former was
a trivial fix, but the latter took a bit more problem-solving to
figure out. Essentially, the IP was outdated (the code is from
2011) and this was causing issues as it was not compatible
with our version of Vivado. Once we figured this out and
were able to update it, the I2S code ran perfectly.

The next issues were inside our data processing
and display portions. The 64-to-1 bus mux used is passed a
select line from the bit mapping FSM. during testing, we
had originally set the select line to have an offset of 8, but

this did not yield proper results as it instead was grabbing
data that did not resemble what we had expected. Once we
saw this, we tried out different integer offsets and eventually
found 18 to work flawlessly. The registers connected to the
mux also had an issue associated with them, specifically
their clock frequency. They were originally hooked up
directly to the 100MHz clock in the board, but this caused
the outputs to be sent at inappropriate times and caused the
data to be a scrambled mess. To fix this, we used a generic
gen_pulse component and set the clock to match up with the
one being used by the FSM.

Once we had fixed those problems, there was one
interesting thing we found when playing certain tones
through the board. For example, if we played a 500 Hz
frequency tone, the device did not necessarily display the
intensity of the sound. Instead, it seemed to display the
physical wave itself, almost as if the device were
functioning as an oscilloscope. What we think caused this
was the sampling rate of our Pmod Audio Headers - for
some reason, it seemed to sync up and produce the periodic
signal we witnessed.

CONCLUSIONS

Overall, this project was extremely satisfying. To
see our project come together and look almost exactly how
we planned it was amazing and we learned some valuable
lessons while we were at it. Firstly, we realized the
importance of choosing a realistic scope for our project.
Originally we wanted to have the ability to show both the
loudness of the song(Voltage) and the frequency of the
sound depending on the position of a switch. We quickly
learned that with the amount of time and resources we had
would not be capable of producing a circuit to determine the
frequency of a song. Had we chosen to implement
frequency toggling into our project, we most likely would
not have been able to finish on time.

Additionally, we learned how to rely on our
groupmates to get the best results out of our project. All of
us realized that none of us would be able to get this project
done on our own so we made sure to use many different
communication methods to figure out who was doing what
part of the project. We also solidified the idea that it is
extremely important to make sure you are communicating
all the way through each step of a project, especially since

we basically made two different parts of the project that we
needed to make sure would seamlessly interact with each
other. It is important to make sure each group member
knows about each and every change that is made to the plan
and understands how it affects their individual parts.

REFERENCES

[1]
S. Scott_1767, “I2s Pmod Quick Start (VHDL),” DigiKey,
26-Mar-2021. [Online]. Available:
https://forum.digikey.com/t/i2s-pmod-quick-start-vhdl/13065.
[Accessed: 15-Mar-2022].

[2]
D. Llamooca, “VGA Cotroller,” SECS Oakland University
.[Online].Available:
http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPG
A/Vivado/Unit_7/VGA_control.pdf. [Accessed: 10-Apr-2022].

