

Tic-Tac-Toe using an input interface (keyboard) and a VGA screen as an output

interface

Final Report

Angel Bautista Romero, Antonio Montagna, Paolo Nikaj, Ian Betz

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: bautistaromero@oakland.edu, amontagna@oakland.edu, pnikaj@oakland.edu,ibetz@oakland.edu

1. ABSTRACT

The intent of this project is to help students

understand and apply the knowledge earned in the class

“Computer Hardware Design” by applying the topics

gathered throughout the term. A tic tac toe game is going to

be presented, the game will include all the requirements

asked on the guidance such as FSM to deploy the logic of the

game, Datapath, to store and process information, and

demonstration as a proof to verify the digital integration and

an external interface with the use of a keyboard and VGA.

The topic of the game as well as the inputs and outputs will

be discussed in the following part of this report.

I. INTRODUCTION

 A Tic-Tac-Toe was created using a Nexys Artix-7

FPGA board, in addition to a keyboard and a vga connected

screen. The vga screen will display distinct colors to

differentiate the two different players of Tic-Tac-Toe game

board, and the keyboard will allow the player to select which

box their game piece will be placed in. In the creation of this

project we will first create a two player mode which will

allow users to play on the vga screen. In the later stages of

development of our project, a game process of winning was

implemented with the use of LEDs. The team members of

this project also sought the creation of a single player version

which will allow the player to play against the computer. This

will require additional code for the artificial player to

determine where to place its game pieces.

In figure 1, a block diagram for our project is shown.

This block diagram includes a Keyboard as input, a game

memory to store the keyboard input, game process to decide

what is the current decision of the game, an FSM to control

important decisions, a game output to get ready the

information given by the game process, and at the end a VGA

display to show the current status of the game.

 Figure 1. Tic Tac Toe Top File

2. II. METHODOLOGY

Input

 The game input was interfaced through a keyboard

connected to the Nexys Artix-7 FPGA board over PS2. The

number pad is mapped 1 to 1 to the tiles on a tic-tac-toe board

so that selecting number “9” will select the top right cell on

the board for example as shown in figure 3. The registers will

be enabled when the “done” signal is processed once the

keyboard is pressed to actuate the decoder. It is important to

note that the “my_ps2keyboard” circuit has been given by

Llamocca's website [1].

Figure 2. my_ps2kayboard circuit

Figure 3. Input Memory logic

The input processing block then enters data into nine

registers by using a decoder registering the four Least

significant bits from “my_ps2keyboard” as shown in figure

4. The decoder will enable the selected register. Each of these

registers contains two bits of input data from the turn block

and the signal from the output of the decoder to indicate

which register the information is going. The first bit will

indicate whether the cell has been selected by either player or

is still blank and available to be claimed. The second bit will

indicate which player has chosen the cell. The value of this

field will be irrelevant if the first bit does not indicate that it

has been chosen. Data from the number pad is fed the same

to all registers but the decoder block will decide which

registers will have their value updated via the enable signals.

The outputs from these registers will be combined into one

eighteen bit number that the VGA display logic will use to

determine which cells are displayed as which color.

Figure 4. Decoder set of values

Figure 4 shows how the decoder will work according to

the different outputs of the keyboard assignment. These values are

unique and easy to follow depending on which section of the game

is being played.

Game Logic

 The game starts off with a clear board and ready for player

one to make a move. Once a move is made and an output is received

from the keyboard, the “Turn Block” will alternate a bit from high

to low signaling that the next move is for player two. Once another

output is received from the keyboard, then the “Turn Block” will go

back from low to high. The keyboard outputs are decoded and

assigned to 9 registers that represent the game board and each hold

2 bits. One bit tells which player is making the turn and the other bit

tells the VGA to enable the specific block for its corresponding

location. The player bit is read by the VGA as the instruction for

what color to display in the block. So far, we are running the game

in an infinite loop where the two players have to be responsible for

not overriding each other’s moves. The players are also responsible

for resetting the game with the reset button after each game. We

are doing this to make sure that we get a functioning game

first. Once we get this nailed down, we will work on creating

additional logic instructions that account for the possible

outcomes and displaying the winner either through the

onboard LEDs or the seven-segment displays. The next step

we will take will be to implement a code that will run a check

on whether the blocks are already occupied by a player’s

move so that an override is not possible.

Figure 5. Truth table from a game

FSM of the game logic

Figure 6. FSM game logic

 Figure xx represents how the game logic is operational when

the game is started. In the first state, the game will start after a

“resetn” is pressed, the following process will wait until the “done”

signal from the “my_ps2keyboard” signal is actuated, this happens

when a key from the numpath is pressed. this it will actuate the

game logic as well as the register selection of the memory.

Depending on what the decoder is registered, the game logic will

indicate the input instruction to the chosen register, this will

contain two bits and they will vary depending on the player

currently playing.

 18 generated values will keep the current values of used

registers as well as change values of unused registers. This will

generate the different sections on the vga. After 18 bits are

generated on the “VGAins” signal. The FSM block will

concatenate the values and send them on a signal to start the win

process of the game. In this process, the FSM will determine when

a player has successfully completed a series of follow straight three

areas as a traditional Tic Tac Toe. Once there is a winner, the FSM

will instantly update a series of LEDs on the FPGA to choose a

winner. After there is a winner, the game will be needed to start

from zero, thus the player will reset the board of the game.

Output

 The output from the game logic block of code will

be in the form of an eighteen bit number, this eighteen bit

number will contain all of the information needed to display

the game. Each register’s output will be two bits, the first bit

will say whether or not the registers are assigned space is

blank, while the second bit will signify which player has

occupied the space, if it is occupied. This eighteen bit value

will be the combined values outputted from nine registers,

register nine being at the most significant bit, and register one

at the least significant bit. The output value will be used in

order to track the games progress as well as to inform the

VGA Display.

Figure 7. VGA Display for Sample Game

VGA Display

The VGA display portion of this project is executed

by retrieving the eighteen bit code that is outputted by the

game logic component outlined above in the Output section.

This binary value is then deconstructed in order to display the

gameplay. The first two bits, least significant, come from

register one, which represents the bottom right space on the

tic-tac-toe game board. Bit zero represents which player

occupies the space, and bit one represents whether or not the

space is occupied. Similar logic follows the remaining

registers, with register nine being represented by bits 16 and

17. Register nine is used for the upper right space on the

gameboard. The eighteen bit output is continuously updated

as the game progresses. The VGA display is divided into nine

ranges, one given to each space of the gameboard. These

spaces will remain blank (black) until occupied by a player,

then they will be filled with their player's color, i.e. red for

player one and blue for player two. The VGA will continue

to be filled as the players make inputs, until the game is

finished and reset, at which time the display will be cleared

and reset back to a blank screen.

Figure 8. VGA Circuit Diagram

3. III. Experimental Setup

 The game will be tested by connecting the display to the

VGA port found on the Nexys Artix-7 FPGA board. Then

the keyboard will be connected to the board via a PS2 to

USB type-A adapter. The board itself will be powered

through the micro USB port that is also used for

programming.

 We will then test a number of different conditions and

make sure that each player can still claim each cell. The

game needs to be efficient enough to run without much

delay in the time it takes to reflect a player’s choice but

given the processing power at our disposal with these FPGA

boards, that should not be a significant roadblock.

 Virtual testing in Vivado was also performed to ensure

that the registers would store values as expected. In figure

seven below, we see that the commands are being simulated

for each of the cells and the register values are changing

accordingly. The turn flip-flop is also alternating as

expected which changes what color is being displayed. The

PS2 logic block was bypassed in order to more easily

simulate the data coming into the decoder. Only the “data

in” and “done” signals were simulated in the test bench

(aside from clock and resetn). Other simulations also

showed that the win condition logic with LED’s worked

which was helpful instead of playing the game each time in

order to test that it worked.

Figure 9: Testbench simulation

IV. Results

 The main result that was desired from this project was the

ability to play a game of tic-tac-toe with two players on a

computer monitor using a keyboard as input. From a purely

subjective analysis, we have achieved this goal. We could

look at the response time of the game to determine how

much latency is experienced between a button press and the

corresponding cell changing state on screen to determine the

efficiency of the game state logic for a quantitative result.

This analysis may not be necessary though as the circuit is

mostly combinational and the latency is not perceptible to

the human eye. As far as anyone can tell, the screen updates

upon an input instantaneously.

Figure 10: Game in Action

Conclusions

This project could be further improved by implementing the

following features.

1. AI Opponent

2. Real X’s and O’s

3. Logic to handle games that end in a draw

4. Ability to keep score over several games

5. Logic to prevent players from taking claimed cells

 AI could be implemented by utilizing the flip - flopping

active player bit as an enable for the AI circuit. A simple AI

wouldn’t even require picking the most optimal cell but

instead just choose a random space that is currently not

occupied. If the random space is chosen by the AI then pick

the next open cell.

 X’s and O’s could be implemented to make the game

more appealing. The current implementation uses red and

blue squares to indicate each player as shown in the

“Output” section above. This would be done using the code

from the professor and by converting image files to txt files

using matlab. the images would then be used as sprites in

gameplay.

 Games that end in a draw state could be detected by when

all cells have been claimed but none of the eight win

conditions have been met.

 In order to keep track of points for each player across

multiple games, a counter for each player would be needed.

Then the ability to reset all game variables except for these

counters would need to be implemented.

 Cell claimed state is already stored in the eighteen bit

vector that describes the game board state. This value would

need to be piped back to the decoder block where it is then

decided if the move that was just executed is valid or not.

References

[1] "VHDL Coding for FPGAs" Director: Daniel Llamocca -

Associate Professor. Access on March 15th, 2022. VHDL

Coding for FPGAs (oakland.edu)

[2] Diligent, “Nexys A7 Reference Manual,” Nexys A7

Reference Manual [Reference.Digilentinc]. [Online].

Accessed on March 15th 2022.

https://reference.digilentinc.com/reference/programma ble-

logic/nexys-a7/reference-manual.

[3] “FPGA Based Tic-Tac-Toe Game with VGA Output”

Matthew Button, Chris Lair, Kacper Wojtowicz Electrical

and Computer Engineering Department School of

Engineering and Computer Science Oakland University.

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

[Online] Accessed on March 15th 2022. Paper Title (use

style: paper title) (oakland.edu)

https://www.secs.oakland.edu/~llamocca/Courses/ECE2700/F19/FinalProject/Group10_tictactoe_vga.pdf
https://www.secs.oakland.edu/~llamocca/Courses/ECE2700/F19/FinalProject/Group10_tictactoe_vga.pdf

	1. Abstract
	I. Introduction
	2. II. Methodology
	3. III. Experimental Setup

