
Keyboard Sound Synthesizer

List of Authors (Matthew Adams, Mohammed Shatit, Thomas DeSchutter, Anthony Hamm)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: mshatit@oakland.edu, matthewadams@oakland.edu, arhamm@oakland.edu, tmdeschutter@oakland.edu

Abstract—The purpose of this project is to use external

peripherals to create a sound synthesizer using the Nexys

A7-50T. This project is capable of playing 16 different notes

corresponding to 16 keys on a keyboard in a similar

orientation as a small-scale piano. The notes are played

through a piezo buzzer and displayed on 7-segment displays.

Notes play for a quarter of a second, unless a sustain button

is asserted. Notes will continue to play until the button is let

go. The findings of this project were that the Nexys A7-50T

uses a scan code when interfacing with PS/2 keyboards,

rather than ASCII as originally thought. In addition, it was

discovered that the 100 MHz on board clock was too fast to

achieve the desired note frequencies. This was addressed by

using a clock divider which allowed for the lower

frequencies needed for the notes. Overall, this project

suggests that fpgas are capable of a wide range of

applications.

I. Introduction

This report covers the methodology and

implementation of a sound synthesizer on a Nexys A7-

50T using a keyboard, piezo buzzer and on board 7-

segment displays. The motivation behind this project is to

gain more knowledge in interfacing with external

peripherals and pulse width modulation (PWM). This was

accomplished by creating a keyboard sound synthesizer

that acts as a small-scale piano. Many of the topics used

in this design were learned in class and expanded upon.

This includes interfacing with a keyboard and pulse width

modulation. One specific example of this is that research

needed to be done to determine that the Nexys A7-50T

uses a scan code when a key on a PS/2 keyboard is

pressed rather than ASCII code [2].

II. Methodology

For this project, the input device is a USB keyboard.

The keyboard uses the PS/2 interface protocol, making

use of the my_ps2keyboard circuit from unit 3. The 8-bit

output of the my_ps2keyboard circuit is a scan code of

whatever button was pressed. This 8-bit signal is sent to

the LUT and 7-segment display module whenever a key is

pressed. The LUT converts it to a 4-bit sel for a mux

which selects between the 16 musical notes. The inputs of

the mux are 16 PWM circuits with different frequencies.

The output of the mux is connected to a piezo buzzer that

plays the note. Notes only play for 0.25 seconds unless a

push button on the board is held down. This is controlled

by a finite state machine. The 7-segment display module

decodes the scan code and uses a serializer to display the

note on the 7-segment displays.

Figure 1: Sound Synthesizer Flow Chart

Figure 2: Sound Synthesizer Block Diagram

A. PS/2 Keyboard Interface

 The code for this circuit was available on the

course website [1]. The PS/2 interface transfers data

synchronously. A chip, PIC24FJ128, inside the Nexys

board translates the USB signal into an old-style PS/2 bus.

This bus carries two signals, one for the clock and one for

the data. The clock is used to synchronize the

communication. The data is sent to the board in bits one

after the other wrapped in between a start and a stop bit.

The data will be received and processed by the board by

the ps2read circuit which takes the clock and the input

data bit by bit to then output a 10 bits signal. The PS/2

circuit is controlled by an FSM to account for the start bit

of the data and to keep track of the count of the number of

bits received. A filter is used to make sure that the PS2

clock is constant for at least 8 clock cycles. To interface

with a keyboard, the ps2read circuit is used with another

finite state machine to account for key holding and

shifting functionalities. It is also used with a register to

output the data when a ‘done’ signal is high.

B. Key Code to Tone Index LUT

 The LUT will control the sel bits of the mux.

Again, this circuit was available for use from the course

website [1], but modifications were needed to accomplish

our goals. One input (ILUT) to the LUT will be the 8-bit

output of the PS2 circuit (scancode) which will contain

the scancode of the current musical note. Based on the

note a different frequency will need to be played on the

piezo buzzer. So, the LUT will output the correct select

bits (OLUT) for the mux to choose the PWM circuit that

has the desired frequency. Since there are 16 different

notes, the corresponding output of the LUT will be 4 bits.

The LUT also takes a second input (DCin), which is the

duty cycle dictated by the FSM. The scancode is again

compared to the 16 designated key values. If the scancode

matches one of the 16 key values, then the LUT will

output the unchanged input duty cycle (essentially

allowing the volume set by the FSM to pass). If the

scancode does not match one of the designated values,

then the LUT outputs a duty cycle of zero (ensuring no

note will be played by undesignated keys).

Figure 3: LUT Flow Chart

C. 7-Segment Display Module

 The 7-segment display module is responsible for

controlling the startup message as well as displaying each

note when it is played. The code for this circuit is also

available on the course website but needed to be modified

to accomplish our goals [1]. When SW0 is set to 0, the

startup up message is displayed. This is an 8-word

message with each message displaying for one second.

This is done using a 1 second counter and a FSM. The

state machine has 9 states, the last state outputs nothing so

there is a break before the message loops. In each state,

the z output of the counter is checked to determine if the

count has been reached. Once it has, a 40-bit output is

sent to the 7 segment serializer. Every 5 bits of this output

represent a character and is one of the inputs to the

serializer.
 The serializer [1] is composed of a mux, counter,

fsm, 3-to-8 decoder, and a 7-segment decoder. The 7-

segment decoder is a modified version of the hex to 7-

segment decoder to allow for more characters to be

displayed. The z output of the counter goes high every

0.001s. Whenever this occurs, the state machine outputs a

3-bit select and moves to the next state. This select is the

input to a 3-to-8 decoder as well as an 8-to-1 mux. The 3-

to-8 decoder controls which 7 segment display is on by

controlling the AN bits. The mux selects which input or

character is sent to the 7-segment decoder. Since the

count is reached so fast, it appears that all 7 segment

displays are on at the same time and the desired message

is displayed.
 When SW0 is set to 1, the notes are displayed

based on the key pressed. This is done by a decoder which

takes the 8-bit scan code from the ps/2 keyboard circuit

and converts it to a 40-bit output depending on the key

pressed. The process for how this output is displayed is

the same as with the startup message. A mux which uses

SW0 as the select bit controls which of the two 40-bit

outputs to send to the serializer. For all notes, they are

displayed on the two right displays and if it is sharp, it

displays that as well. When any other key is pressed,

nothing is displayed.

D. PWM Circuit Array, Multiplexor, and Clock

Divider

 Each musical note corresponds to a unique

frequency that needs to be sent to the buzzer pin. The

method chosen to generate these different frequency

signals was to utilize the PWM circuit outlined on page

12 of Unit 3 notes [3] and available on the course website

[1]. Since the goal is to achieve 16 distinct musical notes,

the factor that should vary is the period, which is

determined by the TPWM signal. Unfortunately, the

TPWM signal is not an input of the PWM circuit, but

rather it is a parameter and as such, it cannot be varied

once the circuit is generated during synthesis. With this in

mind, a collection of 16 separate PWM circuits will be

used, each with a distinct TPWM parameter set to

correspond to the musical note that it is to generate. The

duty cycle input of each of these PWM circuits will be set

to the same value (determined by the FSM), so that the

volume from each PWM circuit is uniform. This

collection of PWM circuits will all output to one 16 to 1

multiplexor. The output of this multiplexor will be

selected using a select input generated by a LUT,

mentioned previously. A piezo buzzer will be used as the

audio output. This is accomplished by wiring one pin of

the buzzer to ground and the other pin to pin JA1 on the

Nexys A7 board. The oPWM signal is assigned to JA1 in

the XDC file.

In order to calculate the TPWM value for each individual

circuit, a calculation needed to be performed. First, one

problem needed to be addressed. The clock on the board

is 100 MHz, and the TPWM parameter is an integer value

(max value of 65,535). As shown below, the clock is

much too fast to achieve the desired musical notes in this

way:

100 × 106

65,535
= 1525.9 𝐻𝑧

This shows that providing a maximum TPWM

value with a 100 MHz clock yields a high frequency of

1525.9 Hz, while our desired range of notes is about 520

Hz - 1244.6 Hz [5].

The way that this problem was solved was to use the

MMCM clock divider circuit from page 19 of Unit 4

notes [4] which is also available on the course website

[1]. This unit simply takes an input of the clock to be

divided and outputs 3 clock signals (one identical to the

input, one that is half the speed of the input, and one that

is a quarter of the speed of the input). In order to have the

TPWM values at roughly the same scale, both the 25

MHz output and the 50 MHz output of the clock divider

were used, the former for the lower frequency notes and

the latter for the higher frequency notes. Below is a

sample calculation of how the TPWM parameter was

calculated for the C#5 note [554 Hz]:

25 × 106

𝑇𝑃𝑊𝑀
= 554 𝐻𝑧

45,126 = 𝑇𝑃𝑊𝑀

Figure 4: Note Frequencies (Hertz on left column) [5]

E. Control Circuit (FSM)

 The FSM consists of two states, one that mutes

the volume while waiting for input and the other to keep

the volume on for a certain length of time. When in state

1, the FSM mutes the volume by setting DCin to zero and

waits for the done signal from the PS/2 circuit (PS2Done)

before proceeding to state 2. When in state 2, the FSM

turns the volume on by setting DCin to a constant value

(20,000). This value was chosen because it results in

roughly half volume for many of the notes, however since

it is a fraction of TPWM the volume will have some

variation depending on the note being played. The FSM

then checks if the sustain button is pressed by checking if

sus is high or low. If the sustain button is being pressed

the FSM remains in state 2, sustaining the note as long as

the user decides. If the sustain button is not being pressed,

then the FSM remains in state 2 for 0.25 seconds (until

the counter expires and z goes high) before returning to

state 1, resulting in a 0.25s note. This counter component

is a modulo-n counter available on the course website [1].

Figure 5: Main Finite State Machine

III. Experimental Setup

 In order to verify the functionality of this project,

a simple test bench was created. The goal of the testbench

is to test two different scenarios: one in which a key is

pressed and the sustain button is not pressed and one in

which a key is pressed and the sustain button is pressed

and held down. The expected result is that in the first

case, the FSM will enter state 2 when PS2Done goes

high. At this time the display should show the note being

played and the FSM should remain in state 2 until the

counter expires (z =1), at which point it will return to state

1. In order to observe this result in simulation, the counter

needed to be scaled down significantly (0.25 seconds is

much too long) and a value of 30 clock cycles was chosen

for simulation purposes. The expected result in the second

case is that the note played would be held if the sustain

button is pressed. The counter would be ignored in this

case and the note will stop playing when the sustain

button is released. This can be seen in the simulation.

figure 2 where sus (sustain button) is high.

Figure 6: Case 1 Simulation Results

 The image above is the simulation results of the

first case from the experimental setup section. As

expected, once the PS2Done signal goes high, the seven

segment display changes to display the note being played

and the FSM enters state 2 for 30 clock cycles before

returning to state one (at which point the note is

muted). Upon returning to state one, the note played

remains on the seven-segment display until a new note is

played.

Figure 7: Case 2 Simulation Results

 The image above is the simulation result of the

second case from the experimental setup section. As

expected, once the PS2Done signal goes high the seven

segment display changes to display the note being

played. However, since the sustain button is being held

down, this time the FSM remains in state 2 long beyond

30 clock cycles and as a result the note is played longer.

IV. Results

After uploading the code onto the Nexys A7-50T, the

program starts in its default state. This consists of no

sound being played through the speaker and the 7-

segment display outputting the Welcome Message on a

loop. Once the switch is flipped, the 7-segment display

will output the note that was last played. If there was no

note played, then the display will remain blank. The

program will react to keystrokes from an attached

keyboard. Once a key is pressed, the system checks if it is

a valid key. If so, the volume will be turned into a set

value and the selected key’s tone will be played through

the piezo speaker for a quarter of a second. If not, the

volume will be set to zero and the display will be blank.

The sustain button can be utilized to hold the note for as

long as the user pleases. The note will play when the key

is pressed and will stop once the key is released. The user

may play any of the sixteen notes individually but not as

chords.

V. Challenges & Improvements

 One of the challenges that struck out during the

implementation of this project was the volume control of

the notes. Because our method of generating different

notes is generating different frequencies from the master

clock and using a constant duty cycle (DCin) for these

notes, it was hard to make all notes in one volume. One

way we found to overcome this, is to use a look-up table

to map duty cycle values for each frequency of each note

to have them in sync in terms of the volume and to also be

able to raise and lower the volume of the notes as a

whole, but with the limitation of the memory, this was not

achievable. It can be done with the use of a different

FPGA that allows more memory than the Artix-7. An

improvement that could have been made to enhance the

quality of the project is to use a speaker instead of a

buzzer and tie that with our hardware to produce better

quality sounding notes.

VI. Conclusion

 In Conclusion, implementing the Keyboard

Sound Synthesizer was an effective way to put our

learned topics into practice and gain hands-on experience

with designing and constructing a digital system with

external peripherals like the keyboard, 7-segment display,

and buzzer and a control unit to drive the system. The

product could be expanded upon in the future to add more

features such as more notes, volume control, and better-

quality sounds of different instruments.

VII. References

[1] VHDL Coding for FPGAs. [Online]. Available:

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html.

[Accessed: 22-Apr-2022].

[2] A. Brown, “Nexys A7 Reference Manual,” Nexys A7

Reference Manual - Digilent Reference. [Online]. Available:

https://digilent.com/reference/programmable-logic/nexys-

a7/reference-manual. [Accessed: 22-Apr-2022].

[3]Unit 3- External Peripherals: Interfacing [Online].

Available:https://moodle.oakland.edu/pluginfile.php/7446753/m

od_resource/content/15/Notes%20-%20Unit%203.pdf

[Accessed: 22-Apr-2022].

[4] Unit 4-Special Purpose Circuit & Techniques [Online].

Available:

https://moodle.oakland.edu/pluginfile.php/7446764/mod_resour

ce/content/14/Notes%20-%20Unit%204.pdf

[5]Physics of Music-Notes [Online]. Available:

https://pages.mtu.edu/~suits/notefreqs.html [Accessed 23-Apr-

2022].

https://moodle.oakland.edu/pluginfile.php/7446753/mod_resource/content/15/Notes%20-%20Unit%203.pdf
https://moodle.oakland.edu/pluginfile.php/7446753/mod_resource/content/15/Notes%20-%20Unit%203.pdf
https://moodle.oakland.edu/pluginfile.php/7446764/mod_resource/content/14/Notes%20-%20Unit%204.pdf
https://moodle.oakland.edu/pluginfile.php/7446764/mod_resource/content/14/Notes%20-%20Unit%204.pdf
https://pages.mtu.edu/~suits/notefreqs.html

