
Nexys Racer

ECE 4710

Winter 2022

Alexander Saikalis

Shane MacFadyen

David Stamatovski

Seeyam Chowdhury



Project 
Description

User controls a car object using the FPGA’s D-pad in a multiple lane 
road. The user’s point of view will be from the top. Other objects, 
such as cars, will be in other lanes to serve as obstacles. The screen 
and objects will scroll relativistically based on the speed of the user’s 
car.

• General Gameplay

• Avoid obstacles

• Reach end in fastest time possible

• Game ends when reaching finish or the player loses all their health

• Peripherals

• Up/Down Buttons: Accelerate/Decelerate

• Left/Right Buttons: Move Player Left/Right

• Center Button: Navigate Menus/Pause

• RGB LEDs: Lives

• Standard LEDs: Speed Bar

• 7-Seg Display: Distance and Time

• VGA: Video Graphics



Top Block 
Diagram



Top Block Diagram Components

• Datapath
• IO Management

• Button Conditioning – Btn_fsm_top

• Speed Display – Priority Decoder

• Distance and Time 7-Seg Serializer

• PLL Clock Manager – 25 MHz Clock

• User Controlled Components
• Speed/Player Control

• Game Controlled Components
• Obstacle Control

• Lives Control

• Screen Output Components
• VGA Controller

• Main Control Circuit
• Main FSM

• Edge Detector – VS output VGA signal



VGA 
Controller



VGA Driver 
(Method #1)

Source: https://digilent.com/reference/learn/programmable-logic/tutorials/vga-display-congroller/start



VGA Driver 
(Method #2)



Sprite 
Generation

• Sprites are stored in ROM

• Based on the structure of a VHDL file, 

Vivado can infer that it should be placed in 

memory

• A Python script was created to:

• Extract all RGB pixel data from an image for a 

given resolution

• Output a formatted VHDL file that can be 

inferred as ROM

• Data retrieval is only available at each 

rising edge of the clock



Sprite Generation Example



Sprite FSM

• FSM mirrors VGA column and row 
iteration

• Once start is triggered, each 
address of the sprite is output on 
proceeding rising edges (one at a 
time) 

• Sprite address, column, and row 
are registered values 

• Active signal only when the screen 
is drawing 

• Conditional statements are used to 
ensure correct increase in position



Sprite FSM 
Example 
(START)

• Assume a sprite with the following 
dimensions:

• Width: 10 px

• Height: 15 px

• To center the sprite:

• Start when start_line = ‘1’ and VGA 
row position = 239

• Start column: 
639 −10

2
= 314



Sprite FSM Example (DRAW)



Sprite FSM Example (DONE)



Example Screen Structure 



VGA 
Controller 

Block 
Diagram



Obstacle Control

• Controls the generation of obstacles and all their related signals
• Creates a shift enable signal (E_sft) that instructs other blocks as to which cycles the obstacles shift

• Generates a zero-speed signal for when the obstacles are not moving

• Generates obstacle position signals and enable signals for each lane

• Determines if a collision with an obstacle is going to occur in front of the player or to the side of the 
player



Obstacle 
Control



Shift Control



Obstacle 
Generation 
Controller



Obstacle 
Generation 

FSM



Collision Detector

• Obstacle Process

• Determines obs_next and obs_lr signals for each lane

• Obs_next: the obstacle is in front of a potential player 
position

• Obs_lr: the obstacle is to the left or right of a potential 
player position

• Player Process

• Determines next player position based on the left/right 
button inputs

• Determines which lanes the next player position will 
occupy

• Collision Determination:



Obstacle Control Simulation



Player Control

• A register that determines the 
position of the player

• Player uses the left and right 
buttons to change position

• Takes the game boundaries into 
account so as not to go too 
far left/right

• Contains a delay counter so that 
the player position does not 
immediately change



Speed Control

• A register that determines the speed of 
the player

• Player uses the up and down buttons to 
increase/decrease speed respectively

• Sets bounds so that the speed does not 
exceed the value that the maximum 
number of specified bits would allow or 
go below zero

• Enable E_gen comes from FSM_Main

• Synchronous clear is determined by an 
OR operation between collision and 
start



7 Segment 
Serializer

• Embedded with three counters: one 
second counter, distance counter, time 
counter

• Serializer receives eight inputs which come 
from the counters

• Outputs distance on seven segment LED 
displays

• The 4 left-most LEDs display distance with 
a max of 9999

• The 3 right-most LEDs display time with a 
max of 999 seconds



Button Inputs

• The inputs into the rest of the project for the game.

• Each of the 5 buttons was mapped to a debouncer and 
then the 4 directional buttons are mapped to a small 
FSM called btn_fsm

• This FSM controls when these button input values 
would be updated and then passed onto the player 
and speed control circuits.

• The center button signal gets passed into a rising edge 
detector for use later in the main FSM



Main FSM



FSM Main

• The FSM's purpose is to control the game_state variable.

• The game_state is what determines whether the game is 
paused or playing, and whether you have won or lost.

• It takes in the values zero_lives and dist_max to determine 
the win conditions, if dist_max=9999 
without zero_lives becoming one then you win, you lose 
if zero_lives becomes one first.

• To continue through any of the menus or pause you click 
the center d-pad button which 
controls the btn_c_push signal



Demo


