
Dual-Mode LCD Character Entry
System

Remington Davids & Bryan Dogariu
Electrical and Computer Engineering

Department
School of Engineering and Computer

Science
Oakland University, Rochester, MI
RemingtonDavids@Oakland.edu,

BryanDogariu@Oakland.edu

Abstract -- This project was undertaken not
only to create a character entry system for
the LCD, but also to fully grasp how the
LCD operates. The 4x4 keypad was
implemented along the way and gave birth
to the “Dual-Mode” title for the project. The
LCD 1602 module proved to be front-loaded
in terms of its complexity. Once the
datasheet was fully grasped and the
awkward timings were pinned down, the
LCD was surprisingly simple to manipulate.
With the proper controller for one’s needs,
the LCD is a reliable middle ground for
information display; more flexible and
informative than the seven-segment display
and far simpler and resource-friendly than a
VGA output to a monitor.

● Introduction

The LCD module is a widely-used
tool, from credit card readers to temperature
sensors, its diversity cannot be understated.
This report will break down the LCD 1602
module and its functionality into digestible
pieces without delving too far into the
esoteric workings of the microcontrollers
inside the device.

This project allows a user to print
characters two different ways onto an LCD.
In Switch mode, the user can use switches
on the FPGA to select any ascii value, then
press a button to print that character. In
Keypad mode, the user can hold a button
on the keypad down, then press the print
button to print that character to the LCD.

Our group unfortunately had a
member drop the class, so our project was
given permission to be less complex than
originally intended. That being said,
untangling how the LCD worked was still a
fun and interesting challenge. Deciphering
datasheets and testing out different
controllers was a large portion of our
research time. State machine and block
diagram analysis were the two biggest skills
we used in preparing for this project.
Executing the project involved keypad
interfacing, state machine modification, and
a clear understanding of the LCD module’s
instruction set.

● Methodology

The project can be encapsulated in
three parts: The Setup, The Initialization,
and The Output Process.

● The Setup

Before we could get started, we had
to wire up the LCD and the keypad to the
FPGA board. Bryan’s initial setup also
included a power module, but more on that
later. Figure 1 shows the layout of the LCD
module, a deceptively simple one,
especially considering the vast functionality
of the device.

The VCC/GND are self-explanatory,
though the FPGA’s 3.3V output powered the
device perfectly fine. The Vo input was
attached to a potentiometer between 3.3V
and ground so that adjustments to the
contrast could be made easily. The RS, RW,

mailto:RemingtonDavids@Oakland.edu
mailto:BryanDogariu@Oakland.edu


and E ports will be explained in further detail
in the Initialization and Output Process
sections, for now we just need to know that
these three are all input ports. RS is
connected to JA1, RW is connected to
ground, and E is connected to JA2 of the
FPGA board. The D0-D7 pins are all data
input and they are connected to JB 1-4, as
well as JB 7-10. The A and K pins are the
power for the back light of the display. A is
connected to positive 3.3V and K is
connected to ground.

Figure 1: LCD Ports

Originally, a power module was used
in Bryan’s setup. His LCD lit up and seemed
perfectly normal, but it would never display
any characters. After over a week of
troubleshooting, the power module was
discovered to be the problem. For unknown
reasons, the power module was making the
characters on the screen invisible, likely too
much power (despite using the 5V and 3.3V
outputs, respectively). After the power
module was removed and the FPGA was
used as the power source, the LCD worked
perfectly.

The keypad (seen in figure 2) was a
straightforward device to physically
integrate (more on the complex logical
integration later). The 8 pins were simply
plugged into JC 1-4 and JC 7-10.

Figure 2: 4x4 Keypad

The keypad/pmod interface uses 8
pins to detect which of 16 buttons are
pressed by the user. 4 pins are dedicated to
the rows and 4 to the columns. When no
buttons are pressed, the row pins will all
pulled up to a logic high through 10kΩ
resistors. Nothing happens immediately
after a button is pressed. The column pins
are all brought to a logic low one at a time,
and when the column of the pressed button
is brought low, the row pin will be brought
low as well. Knowing the row and column
that are low indicates which button is
pressed.

Figure 3: Keypad Circuit
The block diagram, shown below in

figure 4, shows what our project



encapsulates. The outputs on the right side
(RS, E, and DB) go to the LCD module
itself. The KP bus is the keypad input while
the KP_buffer bus acts as both an input and
an output. SW are the FPGA’s switches.
reset_n is the active-low cpu reset button on
the FPGA board, and clk is the FGPA’s 100
MHz clock. Forward, back, and clear are
user input buttons for moving the LCD
cursor forward and backward as well as for
clearing the display and resetting the cursor
to the leftmost position. pb is the user input
button for printing the selected character to
the LCD.

Figure 4: Block Diagram

● The Initialization

The LCD’s biggest hurdle, as
mentioned before, was just how it operated.
Making sure the LCD was receiving the
correct data at every stage during its
initialization was crucial. The timing of the
instructions was key. The FSM diagram,
shown in figure 6, goes over the details of
the entire process. States 1 through 6 are
considered the initialization phase. These
states require specific timing so that the



Figure 5: FSM Diagram of LCD.vhd

LCD can handle them. The lcd.vhd file
provided by Professor Llamocca handles
the timing for the initialization phase, using
various counters to ensure that each step
gives the LCD enough time to process each
instruction before moving on to the next.

An important thing to note here is
the RS input to the LCD has a default value
of ‘0’. When RS is low, the LCD is in
instruction mode. Any data sent to it will be
interpreted as one of the instructions listed
in figure 6. When RS goes high, the LCD
writes the data it receives onto the display

using an ascii lookup table in one of its
internal microcontrollers. RS must be 0 for
the entirety of the initialization phase. RS
will be used more dynamically in states 7
and beyond (in the Output Process section).

One final detail to point out is that
the initialization phase (states 1-6) only
occur once after the system is reset. Once
the system reaches state 7, the initialization
is done and the device goes into operating
mode.

In state 1, the LCD’s D inputs are
receiving “0011 1000” which, according to
the instruction set shown below in figure 6,
corresponds to the Function Set instruction.
This particular set of bits sets the LCD to



receive 8-bit data and to display data on
both rows of the LCD. The LCD can receive
data in either bytes or nibbles. Since I/O
ports were not in short supply with the
boards we were using, the 8-bit data mode
made more sense and allowed for a wider
range of characters. Since both lines were
used for text, the font selection bit was not
taken into account (there was only one font
option; 5x8 dots).

Figure 6: LCD Instruction Set

In state 2, the LCD receives “0000
1111” which is the Display ON/OFF
instruction. This sets the display to be on
(very important), the cursor to be displayed,
and enables the blinking of the cursor.

In state 3, the LCD receives “0000
0110” which is the Entry Mode Set
instruction. This dictates the direction the
characters are input into the LCD and,
optionally, if the display shifts rather than
the cursor. For our purposes, the cursor
moves in the positive direction and the
display does not shift.

In state 4, the LCD receives “1000
0000” which is the Set DDRAM Address
instruction. Functionally, this simply sets the
DDRAM address to 0. Since our Entry Mode
Set instruction is set up to increment the
DDRAM with each instruction, starting at 0
makes sense. Other applications could
decrement the DDRAM address and start it
at 1111111b or 127dec.

In state 5, the LCD receives “0000
0001” which is the Clear Display instruction.
Without this, the display would contain the
characters stored from the last use prior to
reset.

State 6 is simply a waiting state for
the counters to clear themselves. This
synchronizes them for their use in the
output process.

● The Output Process

This is where the magic happens.
The default values for all variables in this
section are ‘0’. States 7, 8, and 9 (and their
variants) make up the output process. This
process is a modification of the original FSM
in the lcd.vhd file. The process essentially
boils down to checking for an input button
press, then initiates the instructions to carry
out the corresponding command.

State 7 is where the device waits for
an input. If pb is set to high, RS_d is set to
‘1’ (which feeds to the RS input of the LCD)
and the DB_out (which feeds to the data
input of the LCD) is set to SW. RS being 1
sets the LCD to write data to the display
according to the ASCII value of the data
being sent. SW will either be the switch
input on the board or the keypad input,
depending on the device’s mode.

If back, forward, or clear are set to
high,. Firstly, RS_d goes to 0, indicating to
the LCD that the data in DB_out is going to
be instruction data, not ASCII data. x“10”
shifts the cursor one space to the left, x”14”
shifts the cursor one space to the right, and



“01”, just like in the initialization phase,
clears the display. It’s worth noting that
shifting the cursor position is actually the
result of the address counter being shifted
in the LCD’s microcontrollers.

In state 8, the same timers from the
initialization phase are making sure the
instructions have enough time to occur
before moving on to state 9. In state 9, the
device is simply making sure that the button
is released before going to back state 7.
This helps prevent the same instruction
from being input multiple times from one
button press.

● Experimental Setup

The primary testing method of this
device was trial and error and copious use
of LEDs. Having LEDs turn on when a
signal went high was a great way to
approach testing since making a testbench
for this device would have been very
time-consuming and relatively unhelpful. If
we needed to see a signal being sent to the
LCD, a set of LEDs did the job much better
than a testbench because all we needed to
know was if the signals were reaching it or
not. If we didn’t see the output LEDs light
up, we assigned more LEDs to more signals
in the system until we could deduce what
the problem signals were.

● Results

https://www.youtube.com/watch?v=__IQKvx
vu_A&feature=youtu.be

Conclusions

The Dual-Mode LCD Character
Entry System is far from perfect, but we
accomplished what we set out to do. We
learned about two very commonly-used
devices and got them to interface with an
FPGA board. We also learned that

sometimes the most troublesome problems
have the simplest solutions (like when
Bryan’s LCD started working by simply
changing the power supply).

Even though this project heavily
relied on two external files (Professor
Llamocca’s lcd file and the pmod controller
from
https://forum.digikey.com/t/keypad-pmod-co
ntroller-vhdl/13134 ) we still had to delve
deep to learn how to make them do what we
needed them to do. We heavily modified the
lcd file to handle four different instructions
instead of just one. We decoded the outputs
of the pmod keypad block to map them to
the proper ASCII values so that the LCD
module could accept and interpret them.

There is a major fault in this device;
sometimes the system locks up and doesn’t
respond to input and must be reset. We’ve
spent a good deal of time trying to figure out
exactly what causes it, but don’t have
anything conclusive. Our working theory is
that it has no debouncer in the system as is.
Because of this, the LCD is receiving
multiple instructions at once. We don’t
actually check the busy flag of the LCD
(instead we opt to just wait and give the
LCD enough time to do each instruction one
at a time). If we were to improve upon this
device, checking the busy flag before
sending more instructions and/or adding a
debouncer would certainly help with the
reliability of the system.

In the end, though, we just scratched
the surface of what we could have done
with this device. If we had more time and a
full group, we could have made a sensor
and output the data to the LCD. Or perhaps
a calculator, anything with a dynamic
display, really. The LCD is, for the most part,
a tool meant to be utilized in something
greater. Now that we have the knowledge of
how it functions, implementing it alongside
another device is what a future project has
in store.

https://www.youtube.com/watch?v=__IQKvxvu_A&feature=youtu.be
https://www.youtube.com/watch?v=__IQKvxvu_A&feature=youtu.be
https://forum.digikey.com/t/keypad-pmod-controller-vhdl/13134
https://forum.digikey.com/t/keypad-pmod-controller-vhdl/13134


References
1) ST7066U Datasheet:
https://www.newhavendisplay.com/app_notes/ST7066
U.pdf

2) ST7065C Datasheet:
http://www.hantronix.com/files/down/st7065c.pdf

3) LCD 1602 Module Datasheet:
https://ieee.ee.ucr.edu/sites/g/files/rcwecm1621/files/2
018-10/eone-1602a1.pdf

4) ASCII Table: http://www.asciitable.com/

5) LCD wiki article:
http://wiki.sunfounder.cc/index.php?title=LCD1602_M
odule

6) Elegoo Arduino Kit Components:
https://images-na.ssl-images-amazon.com/images/I/D
1oC-c3G5TS.pdf

7) 4x4 Keypad module info:
https://components101.com/misc/4x4-keypad-module
-pinout-configuration-features-datasheet

8) Nexys A7 Datasheet:
https://reference.digilentinc.com/_media/reference/pro
grammable-logic/nexys-a7/nexys-a7-sch.pdf

9) LCD instruction Set:
https://mil.ufl.edu/3744/docs/lcdmanual/commands.ht
ml

10) Alternative LCD controller we tried:
https://forum.digikey.com/t/character-lcd-module-contr
oller-vhdl/12571

11) Professor Llamocca’s ECE 4710 Moodle Page:
https://moodle.oakland.edu/course/view.php?id=2499
86

https://www.newhavendisplay.com/app_notes/ST7066U.pdf
https://www.newhavendisplay.com/app_notes/ST7066U.pdf
http://www.hantronix.com/files/down/st7065c.pdf
https://ieee.ee.ucr.edu/sites/g/files/rcwecm1621/files/2018-10/eone-1602a1.pdf
https://ieee.ee.ucr.edu/sites/g/files/rcwecm1621/files/2018-10/eone-1602a1.pdf
http://www.asciitable.com/
http://wiki.sunfounder.cc/index.php?title=LCD1602_Module
http://wiki.sunfounder.cc/index.php?title=LCD1602_Module
https://images-na.ssl-images-amazon.com/images/I/D1oC-c3G5TS.pdf
https://images-na.ssl-images-amazon.com/images/I/D1oC-c3G5TS.pdf
https://components101.com/misc/4x4-keypad-module-pinout-configuration-features-datasheet
https://components101.com/misc/4x4-keypad-module-pinout-configuration-features-datasheet
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-a7/nexys-a7-sch.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-a7/nexys-a7-sch.pdf
https://mil.ufl.edu/3744/docs/lcdmanual/commands.html
https://mil.ufl.edu/3744/docs/lcdmanual/commands.html
https://forum.digikey.com/t/character-lcd-module-controller-vhdl/12571
https://forum.digikey.com/t/character-lcd-module-controller-vhdl/12571
https://moodle.oakland.edu/course/view.php?id=249986
https://moodle.oakland.edu/course/view.php?id=249986

