
Fixed-Point Calculator  

Danijel Spasic, Rami Sulaiman 

Professor: Daniel Llamocca 

Electrical and Computer Engineering Department 

School of Engineering and Computer Science 

Oakland University, Rochester, MI 

e-mails: dspasic@oakland.edu, ramisulaiman@oakland.edu 

 

 
Calculators are extremely useful components in most any field. 

They have a wide application and are utilized in many areas in 

today’s world. Thus, the goal of this project is to create a fully 

functioning calculator for signed fixed/non-fixed-point 

numbers. Through this project, a much better understanding of 

PS/2 interfacing was established, along with a greater 

understanding of how to build datapath circuits and design 

finite-state-machines.  

I. INTRODUCTION 

Calculators are one of the most efficient tools ever created. 
Their ability to perform operations of large numbers with 
lightning speeds makes most all mathematical calculations 
seem like a breeze. However, it is very interesting to consider 
how a calculator with all of its components works together to 
output desired values. Therefore, the aim of this project is to 
create a fully functioning calculator for signed fixed-point 
numbers. The final result of this project will allow the end-
user to perform basic arithmetic operations on signed fixed 
and non-fixed-point numbers. The user will be able to input 
hexadecimal numbers and perform basic arithmetic operations 
(addition, subtraction, multiplication, division) as on any 
given calculator through a keyboard. The input numbers will 
be limited to a 16-bit width. The inputs and outputs will be 
visible on a 7-segment display.     

II. METHODOLOGY 

The project was split up into various parts, in order to 
simplify the process. The inputs from the user are read as 
signed two’s complement numbers, and the outputs are to be 
interpreted as signed two’s complement numbers. The input 
operands are 16-bits wide, and the output will thus be up to 
32-bits wide. The inputs and output are displayed on the on-
board 7-segment display. The input peripheral is a regular 
USB keyboard. The Fixed-point Calculator Datapath can be 
seen within the References section (Figure-5). This datapath 
circuit will be discussed in detail in the sections below, 
describing every component within this circuit.   

A. Keyboard Interfacing  

The file for interpreting the user keyboard inputs was 
provided by the professor (my_ps2keyboard.vhd). This file 
outputs a “done” signal once a key is pressed, along with a 
specific 8-bit code for each keypress. This code is then 
converted into a value utilizing a decoder (keydecoder.vhd). 
This decoder only considers specific keys on a generic 

keyboard (see References section, Figure-3, for key 
specification).  

The decoder will output a 7-bit code: the three MSBs 
(most-significant bits) refer to either a dot press or an 
operation selection, and the four LSBs refer to the value of the 
number pressed (0, 1..E, F). The four LSBs outputted by the 
decoder will be tied to the eight registers.  

B. Registers  

The registers play a major role within this project. They 
have several inputs and outputs which function to output the 
required values to the serializer component. The provided 
(my_rege.vhd) register file was manipulated in order to give 
the registers additional functionality required for this 
application.  

Regarding their inputs, all of the registers will be inputted 
six hexadecimal values: the input key value pressed 
(keydecoder.vhd output: four LSBs) and the results (4 total) of 
the arithmetic operation component (these results will be 
further discussed in the Arithmetic Operation Circuits 
section). In addition, the registers will have the basic clock and 
reset input signals, as they are made to only operate on rising 
edges of clock cycles and are created with the ability to be 
reset if desired. Also, the registers all have an enable input 
signal, along with a synchronous clear signal (for this case, the 
synchronous clear signal was unneeded and thus driven with 
a constant low). With only the current signals discussed, while 
these registers would be able to function and display results, 
they would not be able to display the required information. 
Therefore, three additional signals were added: result, 
operation, and dot. The result signal will determine whether 
or not the results of the arithmetic operations are to be 
outputted. The result signal works in conjunction with the 
operation signal, which is three bits wide. The operation signal 
will tell the code which of the arithmetic operation results to 
output. Lastly, the dot signal will place a ‘1’ or a ‘0’ on the 
LSB (least-significant bit) of the output value “Q”. For 
example, if the dot signal is high, then the output of the 
register will have a ‘1’ added at the LSB or concatenated as 
the LSB for certain cases. All three of these signals will be 
driven by the logic finite-state machine.   

In terms of the outputs of the registers, they will only be 
outputting two five-bit wide numbers. These numbers are both 
the user inputted hexadecimal numbers, and the arithmetic 
operation results. Both will be tied to the serializer 
component.  



Two very similar registers files were created for this 
project: my_rege.vhd and my_rege_firstvalue.vhd. The file 
my_rege.vhd was utilized for registers reg1 thru reg3 and reg5 
thru reg7. Due to the logic of the finite-state machine, another 
file had to be created for registers reg0 and reg4. This file was 
called my_rege_firstvalue.vhd. This file will allow for a 
hexadecimal point bit to be concatenated on the first 
hexadecimal number of both operands. The difference 
between the two register files created (my_rege.vhd & 
my_rege_firstvalue.vhd) is the fact that the 
my_rege_firstvalue.vhd file will allow a hexadecimal point to 
be written to the first register of both operands (reg0 & reg4) 
for the specific case of the hexadecimal point being the very 
first key press.      

C. Serializer  

The file for writing numbers onto the 7-segment display 
was provided by the professor (serializer.vhd). However, this 
file only displays values on four of the eight displays, starting 
from the right-most display; the input values populate from 
right to left on each display. In addition, the hex2sevenseg.vhd 
component did not take into consideration the decimal point. 
Therefore, modifications were required. First, the 
serializer.vhd file was modified in order to enable all of the 
displays. This allowed for four more inputs to be added to the 
multiplexor.  In addition, the orientation of the displays was 
rearranged so that the inputs A down to H would be arranged 
from left to right. Also, the inputs were made to be five bits 
wide, with the LSB being the driver for the dot (dt) segment 
of each display. Thus, the hex2sevenseg.vhd file was edited to 
account for the dot, as well. See References section for the 
serializer datapath circuits (Figure-2A & Figure-2B).   

The last edit made to the serializer.vhd file was adding 
another set of eight inputs, along with a signal which was 
labeled “result.” This second set of inputs will be connected 
to the result outputs of the registers, as opposed to the operand 
value outputs which are connected to the first set of eight 
inputs (A, B…H). The way this circuit now works is that once 
the signal “result” (which is an output of the finite-state 
machine) is high, the serializer will display the result outputs 
of the registers. This will allow for the user to be able to see 
the outcome of the selected operation. Thus, after making the 
required edits to the serializer.vhd and the hex2sevenseg.vhd 
files, this new circuit could now be utilized as required.  

D. Arithmetic Operation Circuits 

The addition and subtraction files utilized were created by 
the professor (my_addsub.vhd and fulladd.vhd). No changes 
were made to these files. The multiplication file utilized was 
also provided by the professor (my_mult.vhd). No alterations 
were made to this file either. The unsigned division circuit was 
created utilizing the datapath circuit seen in Figure-1A, and 
only the quotient was considered. The finite-state machine 
seen in Figure-1B (see References) was also created from 
scratch. After creating the unsigned division circuit, the signed 
division circuit was created (see Figure-1C in References). 
All of the arithmetic operation circuits were combined in a top 
file.   

The arithmetic operation component (arith_circuits.vhd) 
is a file that combines the arithmetic operation circuits. This 
circuit has several inputs and outputs. The more crucial inputs 
are the outputs of the registers, in particular the user inputted 
values that get passed by the registers. These inputs are 5-bits 
wide. When inputted into this component, the first step was to 
save the inputs in two variables (labeled op1 & op2) without 
their LSBs (which refer to whether or not a dot is appended 
with the given value). These two variables are essentially the 
two inputted operands. The LSBs of the inputs into the circuit 
(which were originally not considered for the operand 
variables) will be then utilized to determine where a 
hexadecimal point is to be placed after each of the operations 
have been completed. Each of the operations has specific logic 
which will handle the inputted operands, and then determine 
where a hexadecimal point should be placed on the result.  

The first section of this component deals with the addition 
and subtraction input operand logic. In this section, operand 
one was split up into two 16-bit numbers (labeled op1_x & 
op1_y). The variable op1_x refers to the integer portion of the 
first operand, while the variable op1_y refers to the fractional 
portion of the operand. The variable, op1_x, was sign-
extended where required, while op1_y was concatenated with 
lagging zeroes where needed, since the goal was to make both 
of the variables 16-bits wide. The number of zeroes that was 
concatenated for the op1_y variable, along with the number of 
signs by which op1_x was extended by, was determined by 
the location of the hexadecimal point. This same process was 
followed for the second input operand. An example of this 
code can be seen below (note: Q1(0) refers to the LSB of the 
second input value of the first operand).  

 
Now that both of the variables have the same number of 

integer bits and fractional bits, the two inputted operands are 
finally aligned. The two variables op1_x and op1_y were 
concatenated and input into the adder and subtractor 
components, connecting them to variable “x” of the 
component. Similarly, the other two variables (op2_x & 
op2_y) were also concatenated and input into the adder and 
subtractor components, connecting them to variable “y” of the 
component. The outputs of the addition and subtraction 
components were connected to another variable which was 
then concatenated with zeroes at every single hexadecimal 
number position, except for the position of where the 
hexadecimal dot should show up. At this position, a one was 
concatenated with the number, in order to signify that a 
hexadecimal point should be displayed. Since it is known that 
the fractional and integer portion of each number has 16 bits, 
the hexadecimal point on the output should show up where the 
integer portion of the output ends, and where the fractional 
portion begins (i.e. 16-bit positions from the  LSB). This 
concatenation can be seen below.  



Thus, the final result of the addition and subtraction 
circuits were the variables “Result_add” and “Result_sub,” 
respectively. These variables end up being 40-bits wide, since 
they are made up of individual eight 5-bit numbers. Again, the 
LSB of each individual number will determine whether a 
hexadecimal point will be displayed with the given number. 
These outputs are then tied to the eight registers: the MSBs 
were tied to the first register (reg0) and the LSBs were tied to 
the last register (reg7).  

 The next section of the arithmetic circuit component deals 
with the multiplication variable logic. In this section, the 
operand variables (op1 & op2) were first passed through the 
multiplication circuit (my_mult.vhd) and a result was 
obtained. However, this result (32-bit number) needed to be 
concatenated with a combination of zeroes and potentially a 
one, in order for the output of this circuit to properly display 
values and a hexadecimal point (if it exists). The logic for 
displaying a hexadecimal point on a certain position in the in 
the “Result_mult” variable was solely based on the position of 
the hexadecimal point in the user inputted operands. This logic 
was split up into categories from zero to six, signifying how 
many hexadecimal places from the LSB position a 
hexadecimal point should show up in. For example, if the 
hexadecimal point in the first operand shows up after the first 
hexadecimal value is inputted (“#.###”) and the hexadecimal 
point in the second operand shows up after its third 
hexadecimal value is input (“###.#”), then the hexadecimal 
point has to show up four hexadecimal positions from the LSB 
of the multiplied output. An example of logic created for these 
cases can be seen below.  

 
 The last section of arith_circuits.vhd file deals with the 

logic for the division of the two user input operands. The first 
step of this process was to take the absolute value of the 
inputted operands, and then align the two operands based on 
where their hexadecimal points were located. This would 
determine how many zeroes need to be appended to the LSB 
side of the either operand, along with how many zeroes need 
to be appended to the MSB for either operand. After the 
operands were aligned and saved in their respective variables, 
the first operand variable will be zero-extended with four 
fractional bits. This value, along with operand two’s variable, 
will be tied to the division circuit in order for the given 
operands to be utilized for the user selected division operation. 
The output of the division circuit will be tied to the Result_div 
variable, in order for the top-file to output the result of the 
operation. The output of the division file will be concatenated 
with zeroes and a one at exactly four bit positions to the left 
of the LSB of the division circuit output. The reason behind 
this placement is the fact that the operation was performed 

with four fractional bits. Thus, the dot must show up on the 
displays before the four LSBs of the division output.   

Overall, the arith_circuits.vhd file will output all of the 
required calculations. In addition, the results of all of the 
circuits will output an error messages (“EEEEEEEE”) if the 
user inputs invalid numbers (i.e. numbers that have more than 
one hexadecimal point).  

E. Logic Finite-State Machine 

The finite-state machine depicted in the Fixed-point 
Calculator Datapath (see References, Figure-5) is the brain of 
the project. This logic circuit drives the serializer and registers 
which both captures the values input by the user and allows 
for the registers to output the user designated operation results 
on the displays. This program operates based on the following 
inputs: a keypress signal from the keyboard component, a 
display calculation signal from the board (SW0), and the 
operation/point code from the keypress decoder component. 
With these inputs, the logic of this finite-state machine will 
output the enables to all of the individual registers, dot signals 
to signify whether the register should display a dot with its 
output, a result signal signifying that the user wants to see the 
results of the operation (this will be tied to the serializer as 
well), and the selected user-defined operation which will tell 
the registers which of the operation results to display. Now 
that the inputs and outputs to this circuit were highlighted, it 
should now be noted how the logic of this component 
functions.    

This finite-state machine has 17 states total and operates 
only on rising edges of clock cycles. The states S1-S8 each 
have their own sub-state, denoted by an “a” (S1a, S2a…S7a, 
S8a). The purpose of these sub-states is to ensure that a user 
keypress was completed before jumping into the next state. 
For example, while in the state, S2, the program will only 
move into S2a if the keypress was a hexadecimal number. 
While in S2a, the program waits to ensure that the keypress 
signal is low, signifying that the user has inputted only one 
number and has removed his finger off the key, before 
jumping into the next state, S3, and allow for the next hex digit 
to be inputted. All of the states follow this general logic. 
However, there is a slight difference in how the first digit input 
states (S1 and S5) handle the input from the user, as opposed 
to the other states. This is due to the fact that these states must 
display a point if that is the user’s very first input. For 
example, in S3, if a user presses the dot key, then the program 
will still stay in S3 and wait for the user to input a hex digit. 
However, the program will also send a dot signal (in this case 
“dot1”) to the previous register, in order to display a dot along 
with the already inputted hex digit. This is how states S2-S4 
and S6-S8 function. On the other hand, while in S1 or S5, if 
the dot key is pressed, the program will not remain in these 
states and wait for a digit, but rather tell their respective 
registers to display only the point, and then move on to the 
next states, for the user to input the next digits.  

After the last digit of the second operand is input, the 
program will jump to the last state (S9). Finally, while in S9, 
the program will stay in this state indefinitely until the user 
presses the on-board “resetn” button, restarting the logic back 
to the first state. In regard to what the program does in this 



state, it will either display the results of whatever operation 
the user selected or display the input operands. In this state, 
the finite-state machine will output a signal called “result,” 
which will be connected to the registers and the serializer, to 
tell both of the components to output the result of the 
operation. It will also output a signal called 
“operation_selection,” which will tell the registers which 
operation result the user would like to be displayed on the 7-
segment displays. 

Overall, this component will allow the user to seamlessly 
input their operands and place a hexadecimal point on 
whatever position they desire. For a visual of the Logic Finite-
State Machine component, see References, Figure-4. 

F. Top-file 

After all of the individual components were created, they 
were all combined together in a top-file. This file was called 
FX_Calculator.vhd. The inputs of this file include the two 
USB signals, which will be strictly for keyboard-to-
microprocessor board communication. In addition, the clock 
and reset signals will be an input, as well, and will be 
distributed to all of the components that require these inputs 
to properly function. The first switch (SW0) on the 
microprocessor board will be utilized as an input to the circuit, 
and it will be tied to the finite-state machine, to signal the 
program when the user wants to see the results of the 
operations.   

The main outputs of this circuit that allow for the 7-
segment displays to function and display required values are 
the variables “leds” and “AN.” The output variable “leds” is 
tied to the seven segments of each of the 7-segment displays, 
along with the dot associated with each of the displays. The 
output variable “AN” is tied to the driver of the eight 7-
segment displays. Again, these variables come out of the 
serializer component, which is the component of the circuit 
responsible for displaying the right values on the correct 
displays.   

In order to make sure that the correct keypresses are 
registered the program, the decoded keypress value (output of 
the decoder) is displayed by the onboard LEDs. This output of 
the top-file is labeled “led_keybrd.” For a visual of the 
datapath, see References, Figure-5. 

III. EXPERIMENTAL SETUP 

During the course of putting together the project, piece by 
piece, every component was first tested after it was created, 
before being interconnected with other components.  

First, the finite-state machine was built to be the driver of 
the registers. Then, the registers were connected to the finite-
state machine. The outputs of the registers were then hooked 
up to the serializer component. From here, this portion of the 
project was simulated. Since the serializer component had 
only minor changes, no simulation for this component alone 
was required. The same idea holds for the registers as well. 
Thus, this circuit was tested by simulating various inputs 
(keypress decoder outputs), along with keypresses. The finite-
state logic was examined carefully in order to ensure that the 
program was operating as expected. The registers were also 
closely examined to determine if they behaved as expected. 

Once this circuit was operating correctly, the arithmetic 
circuits component was built and simulated.   

Within the arithmetic circuit, the testing was conducted by 
simulating various inputs (register outputs) and determining 
whether the outputs were displaying correct results. Since the 
addition, subtraction, and multiplication circuits came from 
the professor, these had no direct testing required. However, 
since the division circuit had to be built, this circuit was 
individually tested, in order to ensure that it was working 
properly. Once the entire arithmetic operations component 
was confirmed to be outputting proper results, this circuit was 
connected to the registers.  

After testing all of the required components, the project 
top-file (FX_calculator.vhd) was then uploaded to the 
microprocessor board, and the calculator was tested with 
various inputs to determine if the program responds correctly 
to various cases.  

IV. RESULTS 

After the entire circuit was combined into the top-file 

(FX_calculator.vhd), the project as a whole was tested. 

Below are four example calculations made, and their 

obtained results:  

𝑨𝒅𝒅𝒊𝒕𝒊𝒐𝒏: 90.23 + 1.4𝐴0 = 𝐹𝐹91.6𝐷00 

𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕𝒊𝒐𝒏: 0.2𝐹𝐵 − 00. 𝐹𝐵 = 𝐹𝐹𝐹𝐹. 3460 

𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏: 1𝐴. 90 × 9. 𝐹𝐹2 = 𝐹60.88𝐶20 

𝑫𝒊𝒗𝒊𝒔𝒊𝒐𝒏: 9.003 ÷ 3.003 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐷. 𝐵 

For video demo, please click on the following link: 

https://www.youtube.com/watch?v=-FHj61elFNM 

This demo goes through the addition and division 

example above, and also shows the other operation results 

on these operands. 

V. CONCLUSIONS 

In the end, the project operates as expected. From a high-
level standpoint, the end user will be able to input 16-bit, 
signed, fixed-point numbers and perform basic arithmetic 
operations on these numbers. The particular topic of fixed-
point numbers and how to operate on these numbers was 
studied in the classroom. From the information and lectures 
provided by the professor on how these numbers need to be 
operated on, logic was created in VHDL to perform the 
required steps to complete each operation.   

Although this program works and it outputs proper results, 
there still are some drawbacks to this project that need to be 
mentioned. For example, the program can only handle 16-bit 
numbers. Therefore, if the user wanted to perform an 
operation with the hexadecimal number F9 and they only 
input F9 into the first operand, the program will read this 
number as F900. Thus, the user must input 00F9, in order for 
the program to see the number as the user intended. Another 
issue that this program has deals with the user’s ability to input 
a hexadecimal point into the operand. As it stands, if the user 
clicks on the dot key, the operand will keep incrementing by 
one, due to the nature of the code. Also, due to the keypress 
codes send by the keyboard component, at times, random 
keypresses show up and are accepted by the program as 

https://www.youtube.com/watch?v=-FHj61elFNM


random values. Thus, the user must be careful not to 
accidentally press an incorrect key.  

While the mentioned issues above are not crucial to the 
overall operation of the project, they are still opportunity for 
future improvements. For example, the way the finite-state 
machine outputs the “dot” signal to the registers can be edited 
to account for cases where the hexadecimal point key may be 
pressed multiple times without changing the value of the 
respective register output. Also, further upgrades can be made 
to the keyboard decoder component and finite-state machine 
to specifically not accept any other keys besides for the ones 
regarding the hexadecimal numbers, hexadecimal point, and 
operation keys. Another upgrade could be made to the 
division logic; the dividend could be zero-extended by more 
than four fractional bits, in order to increase accuracy. Four 
was the limit for this project due to the fact that the dividend 
could not exceed 32-bits, as there are only eight 7-segment 
displays. Thus, another improvement that can be made is to 
upgrade the program to be able to handle larger numbers. For 
such a change, the largest hurdle will be to program the 
arith_circuits.vhd file to automatically display the dot on the 
required registers. With larger numbers, there are more places 
where the hexadecimal point could show up, meaning more 
cases need to be considered when outputting final results of 
operations.     

 



 

REFERENCES 

 

Figure 1. Signed Division Datapath circuits  

 

 

 

 

Figure 2. Serializer Datapath circuits 

 

 

 

 

 

Figure 3. Configured Keyboard    

 

 

1A. Iterative Divider (unsigned) 1B. FSM 1C. Signed Divider Circuit 

2A. Original Serializer 2B. Modified Serializer 



Figure 4. Logic Finite-State Machine  

S1

Resetn =  0 

Key

Keyops

0

1

E0<= 1'

S1a

=
 110  or  000 

Yes

No

Dot0<= 1'

Key
1

0

E0<= 1'

S2

Key

Keyops

E1<= 1'

Dot0<= 1'

 000"

 110"

0

1

S2a

Key
1

0

E1<= 1'

S3

Key

Keyops

E2<= 1'

Dot1<= 1'

 000"

 110"

0

1

S3a

Key
1

0

E2<= 1'

S4

Key

Keyops

E3<= 1'

Dot2<= 1'

 000"

 110"

0

1

S4a

Key
1

0

E3<= 1'

S5

Key

Keyops

0

1

E4<= 1'

=
 110  or  000 

Yes

No

Dot4<= 1'

Key
1

0

E4<= 1'

Key

Keyops

E5<= 1'

Dot4<= 1'

 000"

 110"

0

1

Key
1

0

E5<= 1'

S5a

S6

S6a

S7

Key

Keyops

E6<= 1'

Dot5<= 1'

 000"

 110"

0

1

S7a

Key
1

0

E6<= 1'

S8

Key

Keyops

E7<= 1'

Dot6<= 1'

 000"

 110"

0

1

S8a

Key
1

0

E7<= 1'

S9

Calc
0

Keyops
=

Operation
* Operation =  001  or  010  or  011  or  100 

1

Yes

operation_selection <= keyops
result  <=  1 

No



  

 

Figure 5.  Fixed-point Calculator Datapath 


