

Microprocessor Design

List of Authors (Connor Goetz, Matthew Hait, Ethan Postma)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: connorgoetz@oakland.edu, mhait@oakland.edu, ethanpostma@oakland.edu
Abstract—This project’s goal was to create a functioning

microprocessor design utilizing a VHDL programmed Xilinx

FPGA trainer board. In order to accomplish this, a 16-bit

architecture was chosen. Also included in the design will be the

ability to load machine code programs into the processor via text

file, as well as an accessible data stack. The processor has the

ability to understand and execute basic computer programs and

functions.

I. INTRODUCTION

The microprocessor constructed consists of an ALU, register
array, program counter, and stack. An instruction set was
developed alongside the microprocessor to tailor the limited
instruction sets to the processor hardware. The machine code
used by the microprocessor is 16 bits in length as well as the
register and stack width. This microprocessor incorporates
components covered in Computer Hardware Design such as
stack memory, FPGA ram blocks, parametric VHDL, and
generation of memory from text files [2].

II. METHODOLOGY

 The final circuit design of the created microprocessor

circuit is shown here:

Fig. 1 Final circuit Design’

As demonstrated by the diagram, the creation of this

microprocessor required several different components and

design considerations. The following is the methodology

related to each component and design consideration.

A. Machine Language Creation

When considering the creation of this new
microprocessor, one of the first considerations was what type
of instructions it should process. With instructions limited to
an agreed upon 16-bits, it was decided that the processor

should be able to handle basic logic and arithmetic
instructions, with the addition of branching and jumping.
This addition allows for more complex machine coding
techniques such as the use of loops and conditionals.

With these desired deliverables, the machine code was
broken down into four basic categories: logic instructions,
arithmetic calculations, program movement/data memory
manipulation, and immediate value loading. With four basic
categories, a simple logarithmic calculation yields that two
bits are necessary for indexing instruction. Therefore, the first
two bits of each machine code instruction determines its
category. The following documentation lists each category,
its corresponding instructions, as well as their machine
language instruction setup.

Logic Instructions:

Fig. 2 Machine Language: Logic

Arithmetic Instructions:

Fig. 3 Machine Language: Arithmetic

Stack/Movement Instructions:

Fig. 4 Machine Language: Movement

Fig. 5 Machine Language: Data Memory/Stack

Immediate Value Instructions:

Fig. 6 Machine Language: Immediate

For the immediate category, it should be noted that some

design compromises were made to maximize the size of
values that could be loaded. As shown in the machine
instruction above, there is no room for a destination register.
When executing this instruction, the destination register is
always 31, or address 1F in hex. This means that an
immediate value must first be loaded, and then moved into
its true register destination before operations begin. Once
again, this compromise was made to maximize immediate
value range.

B. Arithmetic Logic Unit Design

 Once it was determined what calculations and logic

instructions would be needed based upon the machine

language, the next integral part of the microprocessor was to

design its arithmetic logic unit (ALU). For the project, it

was vital to ensure that the ALU made quick calculations

with enough functionality to be comparable to a industry

ALU [1]. Due to the nature of the machine language which

operates utilizing four basic categories, the ALU was

created to operate in a similar fashion. As inputs, the ALU

requires to 16-bit data entries representing the values to be

operated on. In addition, the ALU requires the first two bits

of the machine language instruction, as well as its last four

bits. By receiving this data directly from the machine input,

the ALU does not require any FSM signals to complete

tasks. This also means that the ALU is a purely

combinational circuit.

 Although the ALU only outputs one results, every

possible logic and arithmetic results is combinatorial

calculated each cycle. By using the machine code input to

multiplex data inside of the ALU, the component can

accurately produce the desired result of those calculated.

This design has positives as well as drawbacks. From a

timing perspective, this implementation style means that the

ALU can operate combinatorial. Since each possible result

is being calculated, it is not necessary for data to be latched

at any point in the calculation process, meaning the output

result is ready within one clock cycle. The primary

drawback to this approach is the amount of required

hardware. Since the circuit calculates each possible output,

many instances of components such as adders are required.

In turn, this utilizes more of the FPGA’s resources.

 On a final note regarding the ALU, by examining the its

circuitry, one may find that besides handling arithmetic and

logical calculations, it also emits necessary signals when it

comes to branch determinations. For the two types of branch

instructions, branch on zero and branch on negative, the

ALU asynchronously calculates whether the register in

question does in fact contain a negative, or zero value.

C. Register Controller and Data Memory

 The register controller and data memory circuits have

similar roles as it is necessary for them to latch data, but

their implementations are vastly different. Starting with the

register controller circuit, this circuit contains 31 registers,

each with a capacity of 16 bits. Their address range for 0x01

to 0x1F. By utilizing two multiplexers, the circuit can

determine which two registers are needed for any given

operation based upon two 5-bit input bus lines whose

sources come directly from the current input machine

instruction. The circuit also has two output 16-bit data lines

which travel towards the ALU. Finally, one input 16-bit

data lines connects to every register so newly calculated

data can be saved. This data’s ability to be saved depends

upon a 5-bit enable signal which emits from the FSM. This

5-bit signal determines which register is the destination for

new data, and a decoder splits the enable signal into a

solitary logic high for the given destination register. Finally

regarding the data memory, it should be noted that although

all 31 registers are accessible by the user, two are set aside

for specific applications. As noted in the machine language

section, register 31 (address 0x1F) is reserved for immediate

value loading. Register 30 (address 0x1E) is set aside

specifically for display data. Therefore, when a user requires

data to be output to the seven segment displays, it must be

copied onto register 30.

 When deciding upon an approach for the data memory,

several considerations had to be made. Like a lab performed

in class, it would have been possible to again use a register-

based approach. This was not chosen however due to its

extreme hardware costs at scale as well as its very limited

capacity. It was determined that utilizing the FPGA’s built

in blockRAM, a relatively large amount of space would in

turn be available for storage. To use this however, two

compromises had to be made. First, regarding timing,

pulling data from this source type inherently requires two

extra clock cycles, therefore costing some execution time.

Second, with such a large data space, it would be difficult to

map each desired location within one 16-bit instruction. To

solve this issue, and to simplify the end use design, a stack-

like approach was utilized. Although not utilizing the

reverse order system of a normal stack, the data memory

address can only be altered by a single increase or decrease

at a time. The inRAMgen circuit tested in class was used to

implement this blockRAM data memory approach. It should

also be noted that the blockRAM is also utilized by the

program counter circuit to store a program. Due to this, the

data memory begins at address 0x2000 to avoid the two data

blocks overwriting each other.

D. Program Counter Circuit

The program counter consists of a 7-bit adder, finite

state machine, and the inRAMgen block to handle indexing

the ran address and jump functions. Internal to the finite

state machine is a counter to index the ram address and

adder to add a jump offset to the ram address. Keeping these

two components internal to the finite state machine is a

faster approach than incorporating physical components that

would need to change in size as the amount of stored

instructions changes. The finite state machine also reduces

the delay of indexing and jumping down to one clock cycle.

The program counter takes advantage of using

parametric VHDL to adjust signals and blocks. In

synthesizing the block, the number of stored instructions is

passed to the synthesizer. This is first used in the synthesis

of inRAMgen by only allocating the minimum ram blocks

needed to store the instructions. Taking the logarithm base

two of the number of instructions, the signal width of the

ram address is scaled to access all allocated ram blocks.

Likewise, the counter and adder internal to the finite state

machine also grow to accommodate all ram address.

Designing the program counter in this way makes

the microprocessor flexible to a wider range of applications.

By decreasing the quantity of stored instructions, excess ram

blocks inside the FPGA are not allocated and may be used

in the stack or other processes.

Whilst the processor functioned normally in the

behavioral simulation, during post-process timing

simulation it was discovered that the program counter was

indexing ram address inconsistently. Inspecting the post-

synthesis nets shoed that two ram address net signals were

synthesized unconnected. Due to the time restraints of the

project, a full analysis into the failure of the program

counter could not be completed. The program counter was

the switched to use a look up table loaded from a text file.

Fig. 7 Program Counter Circuit

1. E. Finite State Machines

 This project utilizes two different FSMs to produce

necessary outputs and results. The first FSM lies within the

instruction entry/data path circuit. This refers to the portion

of the microprocessor excluding the program counter circuit

as well as the output data serializer. The second FSM emits

necessary signals for the program counter circuit.

 The first FSM controlling the instruction entry circuit

emits necessary signals for multiplexing data channels, the

data memory, the stack pointer, as well as the register

memory. Due to the nature of the machine language and its

corresponding four main categories, the FSM approach

creates a simpler design than a combinatorial instruction

decoder. Since the four main categories all contain similar

instruction types, the FSM can emit signals based on the

machine language input. While this requires some extra clock

cycles, a large combinatorial circuit which emits outputs

based upon every single operation and function code is not

necessary. The following FSM flowchart depicts how this

FSM moves through states dependent upon the current

machine language instruction:

Fig. 8 FSM Flow Chart

 The second FSM is utilized in the program counter.

The FSM handles indexing the ram address to the stored

instructions for each processor cycle. If the previous stored

instruction was a branch or jump instruction, the FSM will

also add the offset to the ram address to jump to that

instruction. To prevent the scenario where the ram address

exceeds the stored instructions and pulls random data from

the ram blocks, the FSM checks if the current ram address is

the last ram address and halts the processor if it is.

Incorporating the ram counter in the FSM reduces the

number of clock cycles to index that ram address and

provide the processor with the next instruction.

Fig. 9 Program Counter FSM Flow Chart

2. F. Data Output Serializer

The data output serializer utilized basic parametric

code to let a dedicated register on the board, Register 29,

display on the 7 segment display. A signal is output from

the Register Controller to the Serializer with the value of

Register 29 in it. The 16-bit signal is then broken down into

four 4-bit signals for the four utilized 7-segment

compartments. The figure below shows the inputs and

decoding of the input signal in order to produce the correct

output for the powered compartment of the 7-segment

display.

Fig. 10 Serializer Diagram

III. EXPERIMENTAL SETUP

 In order to test the microprocessor, small cases were

designed to test individual parts like the program counter,

register controller and the stack. The small cases and

instructions helped to confirm that the separate blocks of the

microprocessor all work as intended. To implement the

design on the board, a counter was designed in machine

code to increment the output register every second. Using a

series of registers and jumps, the delay is calculated and set

for implementation to give a one second counter on the 7

segment display. The instructions used for the program are

in the figure below, as well as the description of what each

instruction accomplishes.

Fig. 11 Test Program Instructions

Fig. 12 Simulation of Previous Program

IV. RESULTS

 After performing both simulations and real world tests, the

results of the microprocessor circuit are as expected. To

utilize the circuit, a machine language program is uploaded

to the FPGA board’s block RAM. Based on the given

instructions, the processor then makes necessary

calculations. Results are then displayed via the onboard

seven segment displays as expected.

V. CONCLUSIONS

 Overall, our microprocessor utilizes a FPGA board

to execute instructions and programs efficiently. The

experimental results show that the microprocessor is capable

of things similar to that of a standard simple

microprocessor. We felt we met our project goal of creating

a functional microprocessor with an accessible stack, a

range of logical, arithmetic, and branching instructions, as

well as being able to execute simple computer programs.

We were also able to utilize our microprocessor’s program

storage to load programs from a text file, making the

microprocessor practical in design.

VI. REFERENCES

[1] Arithmetic Logic Units (ALU): An Introduction.

[Online]. Available: https://arith-

matic.com/notebook/arithmetic-logic-unit-introduction.

[Accessed: 20-Apr-2021].

[2] Llamocca, Daniel. “Unit 6- Microprocessor Design”

VHDL Coding for FPGAs.

http://www.secs.oakland.edu/~llamocca/Courses/ECE4710/

Notes%20-%20Unit%206.pdf

