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Abstract—This project’s goal was to create a functioning 

microprocessor design utilizing a VHDL programmed Xilinx 

FPGA trainer board. In order to accomplish this, a 16-bit 

architecture was chosen. Also included in the design will be the 

ability to load machine code programs into the processor via text 

file, as well as an accessible data stack. The processor has the 

ability to understand and execute basic computer programs and 

functions.   

I. INTRODUCTION 

The microprocessor constructed consists of an ALU, register 
array, program counter, and stack. An instruction set was 
developed alongside the microprocessor to tailor the limited 
instruction sets to the processor hardware. The machine code 
used by the microprocessor is 16 bits in length as well as the 
register and stack width. This microprocessor incorporates 
components covered in Computer Hardware Design such as 
stack memory, FPGA ram blocks, parametric VHDL, and 
generation of memory from text files [2]. 

II. METHODOLOGY 

   The final circuit design of the created microprocessor 

circuit is shown here:  

 
Fig. 1 Final circuit Design’ 

As demonstrated by the diagram, the creation of this 

microprocessor required several different components and 

design considerations. The following is the methodology 

related to each component and design consideration.  

A. Machine Language Creation  

When considering the creation of this new 
microprocessor, one of the first considerations was what type 
of instructions it should process. With instructions limited to 
an agreed upon 16-bits, it was decided that the processor 

should be able to handle basic logic and arithmetic 
instructions, with the addition of branching and jumping. 
This addition allows for more complex machine coding 
techniques such as the use of loops and conditionals. 

With these desired deliverables, the machine code was 
broken down into four basic categories: logic instructions, 
arithmetic calculations, program movement/data memory 
manipulation, and immediate value loading. With four basic 
categories, a simple logarithmic calculation yields that two 
bits are necessary for indexing instruction. Therefore, the first 
two bits of each machine code instruction determines its 
category. The following documentation lists each category, 
its corresponding instructions, as well as their machine 
language instruction setup. 

 
Logic Instructions: 
 

 
Fig. 2 Machine Language: Logic 

 
Arithmetic Instructions: 
 

 
Fig. 3 Machine Language: Arithmetic 

 
Stack/Movement Instructions: 
 



 
Fig. 4 Machine Language: Movement 

 

 
Fig. 5 Machine Language: Data Memory/Stack 

 
Immediate Value Instructions: 
 

 
Fig. 6 Machine Language: Immediate 

 
For the immediate category, it should be noted that some 

design compromises were made to maximize the size of 
values that could be loaded. As shown in the machine 
instruction above, there is no room for a destination register. 
When executing this instruction, the destination register is 
always 31, or address 1F in hex. This means that an 
immediate value must first be loaded, and then moved into 
its true register destination before operations begin. Once 
again, this compromise was made to maximize immediate 
value range.  
   

B. Arithmetic Logic Unit Design 

     Once it was determined what calculations and logic 

instructions would be needed based upon the machine 

language, the next integral part of the microprocessor was to 

design its arithmetic logic unit (ALU). For the project, it 

was vital to ensure that the ALU made quick calculations 

with enough functionality to be comparable to a industry 

ALU [1]. Due to the nature of the machine language which 

operates utilizing four basic categories, the ALU was 

created to operate in a similar fashion. As inputs, the ALU 

requires to 16-bit data entries representing the values to be 

operated on. In addition, the ALU requires the first two bits 

of the machine language instruction, as well as its last four 

bits. By receiving this data directly from the machine input, 

the ALU does not require any FSM signals to complete 

tasks. This also means that the ALU is a purely 

combinational circuit.  

     Although the ALU only outputs one results, every 

possible logic and arithmetic results is combinatorial 

calculated each cycle. By using the machine code input to 

multiplex data inside of the ALU, the component can 

accurately produce the desired result of those calculated. 

This design has positives as well as drawbacks. From a 

timing perspective, this implementation style means that the 

ALU can operate combinatorial. Since each possible result 

is being calculated, it is not necessary for data to be latched 

at any point in the calculation process, meaning the output 

result is ready within one clock cycle. The primary 

drawback to this approach is the amount of required 

hardware. Since the circuit calculates each possible output, 

many instances of components such as adders are required. 

In turn, this utilizes more of the FPGA’s resources.  

       On a final note regarding the ALU, by examining the its 

circuitry, one may find that besides handling arithmetic and 

logical calculations, it also emits necessary signals when it 

comes to branch determinations. For the two types of branch 

instructions, branch on zero and branch on negative, the 

ALU asynchronously calculates whether the register in 

question does in fact contain a negative, or zero value.  

 

C.  Register Controller and Data Memory 

     The register controller and data memory circuits have 

similar roles as it is necessary for them to latch data, but 

their implementations are vastly different. Starting with the 

register controller circuit, this circuit contains 31 registers, 

each with a capacity of 16 bits. Their address range for 0x01 

to 0x1F. By utilizing two multiplexers, the circuit can 

determine which two registers are needed for any given 

operation based upon two 5-bit input bus lines whose 

sources come directly from the current input machine 

instruction. The circuit also has two output 16-bit data lines 

which travel towards the ALU. Finally, one input 16-bit 

data lines connects to every register so newly calculated 

data can be saved. This data’s ability to be saved depends 

upon a 5-bit enable signal which emits from the FSM. This 

5-bit signal determines which register is the destination for 

new data, and a decoder splits the enable signal into a 

solitary logic high for the given destination register. Finally 

regarding the data memory, it should be noted that although 

all 31 registers are accessible by the user, two are set aside 

for specific applications. As noted in the machine language 

section, register 31 (address 0x1F) is reserved for immediate 

value loading. Register 30 (address 0x1E) is set aside 

specifically for display data. Therefore, when a user requires 

data to be output to the seven segment displays, it must be 

copied onto register 30.  

     When deciding upon an approach for the data memory, 

several considerations had to be made. Like a lab performed 

in class, it would have been possible to again use a register-

based approach. This was not chosen however due to its 

extreme hardware costs at scale as well as its very limited 

capacity. It was determined that utilizing the FPGA’s built 

in blockRAM, a relatively large amount of space would in 

turn be available for storage. To use this however, two 

compromises had to be made. First, regarding timing, 

pulling data from this source type inherently requires two 

extra clock cycles, therefore costing some execution time. 



Second, with such a large data space, it would be difficult to 

map each desired location within one 16-bit instruction. To 

solve this issue, and to simplify the end use design, a stack-

like approach was utilized. Although not utilizing the 

reverse order system of a normal stack, the data memory 

address can only be altered by a single increase or decrease 

at a time. The inRAMgen circuit tested in class was used to 

implement this blockRAM data memory approach. It should 

also be noted that the blockRAM is also utilized by the 

program counter circuit to store a program. Due to this, the 

data memory begins at address 0x2000 to avoid the two data 

blocks overwriting each other.   

 

D. Program Counter Circuit 

The program counter consists of a 7-bit adder, finite 

state machine, and the inRAMgen block to handle indexing 

the ran address and jump functions. Internal to the finite 

state machine is a counter to index the ram address and 

adder to add a jump offset to the ram address. Keeping these 

two components internal to the finite state machine is a 

faster approach than incorporating physical components that 

would need to change in size as the amount of stored 

instructions changes. The finite state machine also reduces 

the delay of indexing and jumping down to one clock cycle. 

The program counter takes advantage of using 

parametric VHDL to adjust signals and blocks. In 

synthesizing the block, the number of stored instructions is 

passed to the synthesizer. This is first used in the synthesis 

of inRAMgen by only allocating the minimum ram blocks 

needed to store the instructions. Taking the logarithm base 

two of the number of instructions, the signal width of the 

ram address is scaled to access all allocated ram blocks. 

Likewise, the counter and adder internal to the finite state 

machine also grow to accommodate all ram address. 

Designing the program counter in this way makes 

the microprocessor flexible to a wider range of applications. 

By decreasing the quantity of stored instructions, excess ram 

blocks inside the FPGA are not allocated and may be used 

in the stack or other processes. 

Whilst the processor functioned normally in the 

behavioral simulation, during post-process timing 

simulation it was discovered that the program counter was 

indexing ram address inconsistently. Inspecting the post-

synthesis nets shoed that two ram address net signals were 

synthesized unconnected. Due to the time restraints of the 

project, a full analysis into the failure of the program 

counter could not be completed. The program counter was 

the switched to use a look up table loaded from a text file.  

 
Fig. 7 Program Counter Circuit 

 

1. E.   Finite State Machines 

    This project utilizes two different FSMs to produce 

necessary outputs and results. The first FSM lies within the 

instruction entry/data path circuit. This refers to the portion 

of the microprocessor excluding the program counter circuit 

as well as the output data serializer. The second FSM emits 

necessary signals for the program counter circuit.  

    The first FSM controlling the instruction entry circuit 

emits necessary signals for multiplexing data channels, the 

data memory, the stack pointer, as well as the register 

memory. Due to the nature of the machine language and its 

corresponding four main categories, the FSM approach 

creates a simpler design than a combinatorial instruction 

decoder. Since the four main categories all contain similar 

instruction types, the FSM can emit signals based on the 

machine language input. While this requires some extra clock 

cycles, a large combinatorial circuit which emits outputs 

based upon every single operation and function code is not 

necessary. The following FSM flowchart depicts how this 

FSM moves through states dependent upon the current 

machine language instruction: 

 



 
 

Fig. 8 FSM Flow Chart  

 

 The second FSM is utilized in the program counter. 

The FSM handles indexing the ram address to the stored 

instructions for each processor cycle. If the previous stored 

instruction was a branch or jump instruction, the FSM will 

also add the offset to the ram address to jump to that 

instruction. To prevent the scenario where the ram address 

exceeds the stored instructions and pulls random data from 

the ram blocks, the FSM checks if the current ram address is 

the last ram address and halts the processor if it is. 

Incorporating the ram counter in the FSM reduces the 

number of clock cycles to index that ram address and 

provide the processor with the next instruction. 

 
Fig. 9 Program Counter FSM Flow Chart 

 

 

2. F.   Data Output Serializer  

The data output serializer utilized basic parametric 

code to let a dedicated register on the board, Register 29, 

display on the 7 segment display. A signal is output from 

the Register Controller to the Serializer with the value of 

Register 29 in it. The 16-bit signal is then broken down into 

four 4-bit signals for the four utilized 7-segment 

compartments. The figure below shows the inputs and 

decoding of the input signal in order to produce the correct 

output for the powered compartment of the 7-segment 

display. 

 
Fig. 10 Serializer Diagram 

 

III. EXPERIMENTAL SETUP 

 In order to test the microprocessor, small cases were 

designed to test individual parts like the program counter, 

register controller and the stack. The small cases and 

instructions helped to confirm that the separate blocks of the 

microprocessor all work as intended. To implement the 

design on the board, a counter was designed in machine 

code to increment the output register every second. Using a 

series of registers and jumps, the delay is calculated and set 

for implementation to give a one second counter on the 7 

segment display. The instructions used for the program are 

in the figure below, as well as the description of what each 

instruction accomplishes. 

 

 
 

Fig. 11 Test Program Instructions 



 
Fig. 12 Simulation of Previous Program 

IV.  RESULTS 

   After performing both simulations and real world tests, the 

results of the microprocessor circuit are as expected. To 

utilize the circuit, a machine language program is uploaded 

to the FPGA board’s block RAM. Based on the given 

instructions, the processor then makes necessary 

calculations. Results are then displayed via the onboard 

seven segment displays as expected. 

 

  

 

V.  CONCLUSIONS 

            Overall, our microprocessor utilizes a FPGA board 

to execute instructions and programs efficiently. The 

experimental results show that the microprocessor is capable 

of things similar to that of a standard simple 

microprocessor. We felt we met our project goal of creating 

a functional microprocessor with an accessible stack, a 

range of logical, arithmetic, and branching instructions, as 

well as being able to execute simple computer programs. 

We were also able to utilize our microprocessor’s program 

storage to load programs from a text file, making the 

microprocessor practical in design. 
 

VI.   REFERENCES 

[1] Arithmetic Logic Units (ALU): An Introduction. 

[Online]. Available: https://arith-

matic.com/notebook/arithmetic-logic-unit-introduction. 

[Accessed: 20-Apr-2021]. 

 

[2] Llamocca, Daniel. “Unit 6- Microprocessor Design” 

VHDL Coding for FPGAs. 

http://www.secs.oakland.edu/~llamocca/Courses/ECE4710/

Notes%20-%20Unit%206.pdf

 

 

 


